- -

PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents

Mostrar el registro completo del ítem

Sanchis-Perucho, P.; Robles Martínez, Á.; Durán, F.; Ferrer, J.; Seco, A. (2020). PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. Journal of Membrane Science. 604:1-12. https://doi.org/10.1016/j.memsci.2020.118070

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161699

Ficheros en el ítem

Metadatos del ítem

Título: PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents
Autor: Sanchis-Perucho, Pau Robles Martínez, Ángel Durán, Freddy FERRER, J. Seco, Aurora
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] This study aimed to evaluate the feasibility of degassing membrane (DM) technology for recovering dissolved methane from AnMBR effluents. For that purpose, a PDMS membrane module was operated for treating the effluent ...[+]
Palabras clave: Anaerobic membrane bioreactor (AnMBR) , Greenhouse gas (GHG) , Methane recovery , PDMS degassing Membrane , Urban wastewater
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Membrane Science. (issn: 0376-7388 )
DOI: 10.1016/j.memsci.2020.118070
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.memsci.2020.118070
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FJCI-2014-21616/ES/FJCI-2014-21616/
info:eu-repo/grantAgreement/EC//LIFE13 ENV%2FES%2F001353/EU/Membrane for ENERGY and WATER RECOVERY/LIFE MEMORY/
info:eu-repo/grantAgreement/GVA//CPI-16-155/
info:eu-repo/grantAgreement/GVA//C12747/
Agradecimientos:
This research work was supported by Generalitat Valenciana via the fellowships CPI-16-155 and C12747, as well as the financial aid received from Ministerio de Economia y Competitividad via Juan de la Cierva contract ...[+]
Tipo: Artículo

References

McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264

Pretel, R., Shoener, B. D., Ferrer, J., & Guest, J. S. (2015). Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs). Water Research, 87, 531-541. doi:10.1016/j.watres.2015.07.002

Guest, J. S., Skerlos, S. J., Barnard, J. L., Beck, M. B., Daigger, G. T., Hilger, H., … Love, N. G. (2009). A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environmental Science & Technology, 43(16), 6126-6130. doi:10.1021/es9010515 [+]
McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264

Pretel, R., Shoener, B. D., Ferrer, J., & Guest, J. S. (2015). Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs). Water Research, 87, 531-541. doi:10.1016/j.watres.2015.07.002

Guest, J. S., Skerlos, S. J., Barnard, J. L., Beck, M. B., Daigger, G. T., Hilger, H., … Love, N. G. (2009). A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environmental Science & Technology, 43(16), 6126-6130. doi:10.1021/es9010515

Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055

Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049

Wang, W., Yang, Q., Zheng, S., & Wu, D. (2013). Anaerobic membrane bioreactor (AnMBR) for bamboo industry wastewater treatment. Bioresource Technology, 149, 292-300. doi:10.1016/j.biortech.2013.09.068

Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30-38. doi:10.1016/j.seppur.2014.02.013

Xia, T., Gao, X., Wang, C., Xu, X., & Zhu, L. (2016). An enhanced anaerobic membrane bioreactor treating bamboo industry wastewater by bamboo charcoal addition: Performance and microbial community analysis. Bioresource Technology, 220, 26-33. doi:10.1016/j.biortech.2016.08.057

Aslam, M., McCarty, P. L., Shin, C., Bae, J., & Kim, J. (2017). Low energy single-staged anaerobic fluidized bed ceramic membrane bioreactor (AFCMBR) for wastewater treatment. Bioresource Technology, 240, 33-41. doi:10.1016/j.biortech.2017.03.017

Aslam, M., Charfi, A., Lesage, G., Heran, M., & Kim, J. (2017). Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chemical Engineering Journal, 307, 897-913. doi:10.1016/j.cej.2016.08.144

Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019

Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069

Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141-150. doi:10.1016/j.memsci.2015.12.037

Heile, S., Chernicharo, C. A. L., Brandt, E. M. F., & McAdam, E. J. (2017). Dissolved gas separation for engineered anaerobic wastewater systems. Separation and Purification Technology, 189, 405-418. doi:10.1016/j.seppur.2017.08.021

Chen, S., & Smith, A. L. (2018). Methane-driven microbial fuel cells recover energy and mitigate dissolved methane emissions from anaerobic effluents. Environmental Science: Water Research & Technology, 4(1), 67-79. doi:10.1039/c7ew00293a

Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F., Rijpstra, W. I. C., … Strous, M. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086), 918-921. doi:10.1038/nature04617

Knittel, K., & Boetius, A. (2009). Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual Review of Microbiology, 63(1), 311-334. doi:10.1146/annurev.micro.61.080706.093130

Hatamoto, M., Yamamoto, H., Kindaichi, T., Ozaki, N., & Ohashi, A. (2010). Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Research, 44(5), 1409-1418. doi:10.1016/j.watres.2009.11.021

Matsuura, N., Hatamoto, M., Sumino, H., Syutsubo, K., Yamaguchi, T., & Ohashi, A. (2010). Closed DHS system to prevent dissolved methane emissions as greenhouse gas in anaerobic wastewater treatment by its recovery and biological oxidation. Water Science and Technology, 61(9), 2407-2415. doi:10.2166/wst.2010.219

Myung, J., Saikaly, P. E., & Logan, B. E. (2018). A two-staged system to generate electricity in microbial fuel cells using methane. Chemical Engineering Journal, 352, 262-267. doi:10.1016/j.cej.2018.07.017

Chen, S., & Smith, A. L. (2019). Performance and microbial ecology of methane-driven microbial fuel cells at temperatures ranging from 25 to 5 °C. Water Research, 166, 115036. doi:10.1016/j.watres.2019.115036

Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2017). Corrigendum to «Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review» [Water Res. 104 (2016) 520–531]. Water Research, 111, 420. doi:10.1016/j.watres.2017.01.035

Henares, M., Izquierdo, M., Penya-Roja, J. M., & Martínez-Soria, V. (2016). Comparative study of degassing membrane modules for the removal of methane from Expanded Granular Sludge Bed anaerobic reactor effluent. Separation and Purification Technology, 170, 22-29. doi:10.1016/j.seppur.2016.06.024

Henares, M., Izquierdo, M., Marzal, P., & Martínez-Soria, V. (2017). Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis. Separation and Purification Technology, 186, 10-19. doi:10.1016/j.seppur.2017.05.035

Bandara, W. M. K. R. T. W., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., & Okabe, S. (2011). Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Research, 45(11), 3533-3540. doi:10.1016/j.watres.2011.04.030

Bandara, W. M. K. R. T. W., Kindaichi, T., Satoh, H., Sasakawa, M., Nakahara, Y., Takahashi, M., & Okabe, S. (2012). Anaerobic treatment of municipal wastewater at ambient temperature: Analysis of archaeal community structure and recovery of dissolved methane. Water Research, 46(17), 5756-5764. doi:10.1016/j.watres.2012.07.061

Malek, A., Li, K., & Teo, W. K. (1997). Modeling of Microporous Hollow Fiber Membrane Modules Operated under Partially Wetted Conditions. Industrial & Engineering Chemistry Research, 36(3), 784-793. doi:10.1021/ie960529y

Lu, J.-G., Zheng, Y.-F., & Cheng, M.-D. (2008). Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. Journal of Membrane Science, 308(1-2), 180-190. doi:10.1016/j.memsci.2007.09.051

Wickramasinghe, S. R., Semmens, M. J., & Cussler, E. L. (1993). Hollow fiber modules made with hollow fiber fabric. Journal of Membrane Science, 84(1-2), 1-14. doi:10.1016/0376-7388(93)85046-y

Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1), 23-69. doi:10.1016/s0951-8320(03)00058-9

Sin, G., Gernaey, K. V., Neumann, M. B., van Loosdrecht, M. C. M., & Gujer, W. (2009). Uncertainty analysis in WWTP model applications: A critical discussion using an example from design. Water Research, 43(11), 2894-2906. doi:10.1016/j.watres.2009.03.048

Merkel, T. C., Bondar, V. I., Nagai, K., Freeman, B. D., & Pinnau, I. (2000). Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). Journal of Polymer Science Part B: Polymer Physics, 38(3), 415-434. doi:10.1002/(sici)1099-0488(20000201)38:3<415::aid-polb8>3.0.co;2-z

Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R., & Freeman, B. D. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 54(18), 4729-4761. doi:10.1016/j.polymer.2013.05.075

Robeson, L. M., Smith, Z. P., Freeman, B. D., & Paul, D. R. (2014). Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. Journal of Membrane Science, 453, 71-83. doi:10.1016/j.memsci.2013.10.066

Zarebska, A., Amor, Á. C., Ciurkot, K., Karring, H., Thygesen, O., Andersen, T. P., … Norddahl, B. (2015). Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure. Journal of Membrane Science, 484, 119-132. doi:10.1016/j.memsci.2015.03.010

Chan, R., & Chen, V. (2004). Characterization of protein fouling on membranes: opportunities and challenges. Journal of Membrane Science, 242(1-2), 169-188. doi:10.1016/j.memsci.2004.01.029

Robb, W. L. (1968). THIN SILICONE MEMBRANES-THEIR PERMEATION PROPERTIES AND SOME APPLICATIONS. Annals of the New York Academy of Sciences, 146(1 Materials in), 119-137. doi:10.1111/j.1749-6632.1968.tb20277.x

PINNAU, I., & HE, Z. (2004). Pure- and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. Journal of Membrane Science, 244(1-2), 227-233. doi:10.1016/j.memsci.2004.06.055

Raharjo, R. D., Freeman, B. D., Paul, D. R., Sarti, G. C., & Sanders, E. S. (2007). Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(dimethylsiloxane). Journal of Membrane Science, 306(1-2), 75-92. doi:10.1016/j.memsci.2007.08.014

Glória, R. M., Motta, T. M., Silva, P. V. O., Costa, P. da, Brandt, E. M. F., Souza, C. L., & Chernicharo, C. A. L. (2016). STRIPPING AND DISSIPATION TECHNIQUES FOR THE REMOVAL OF DISSOLVED GASES FROM ANAEROBIC EFFLUENTS. Brazilian Journal of Chemical Engineering, 33(4), 713-721. doi:10.1590/0104-6632.20160334s20150291

Cookney, J., Cartmell, E., Jefferson, B., & McAdam, E. J. (2012). Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Science and Technology, 65(4), 604-610. doi:10.2166/wst.2012.897

Yang, L., Zeng, S., Chen, J., He, M., & Yang, W. (2010). Operational energy performance assessment system of municipal wastewater treatment plants. Water Science and Technology, 62(6), 1361-1370. doi:10.2166/wst.2010.394

Buer, T., & Cumin, J. (2010). MBR module design and operation. Desalination, 250(3), 1073-1077. doi:10.1016/j.desal.2009.09.111

Krzeminski, P., van der Graaf, J. H. J. M., & van Lier, J. B. (2012). Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 65(2), 380-392. doi:10.2166/wst.2012.861

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem