- -

Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution

Mostrar el registro completo del ítem

Noriega-Hevia, G.; Serralta Sevilla, J.; Borrás, L.; Seco, A.; Ferrer, J. (2020). Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering. 8(4):1-10. https://doi.org/10.1016/j.jece.2020.103880

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161836

Ficheros en el ítem

Metadatos del ítem

Título: Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution
Autor: Noriega-Hevia, Guillermo Serralta Sevilla, Joaquín Borrás, L. Seco, A. FERRER, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] A hollow fibre membrane contactor has been applied for nitrogen recovery from anaerobic digestion supernatant at different operating conditions obtaining nitrogen recovery efficiencies over 99 %. A mathematical model ...[+]
Palabras clave: Ammonia recovery , Membrane contactor for nitrogen recovery , Nitrogen recovery modelling , Nutrient recovery from anaerobic digestion , PH modelling
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Environmental Chemical Engineering. (eissn: 2213-3437 )
DOI: 10.1016/j.jece.2020.103880
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jece.2020.103880
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-1-R/ES/ESTUDIO EXPERIMENTAL DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA POTENCIAR LA RECUPERACION DE RECURSOS EN LAS EDAR ACTUALES./
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-2-R/ES/MODELACION Y CONTROL PARA LA IMPLEMENTACION DE LA LA TECNOLOGIA DE MEMBRANAS EN LAS EDAR ACTUALES PARA SU TRANSFORMACION EN ESTACIONES DE RECUPERACION DE RECURSOS./
Agradecimientos:
This research was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO projects CTM2014-54980-C21/2-R and CTM2017-86751-C2-1/2-R) with the European Regional Development Fund (ERDF) as well ...[+]
Tipo: Artículo

References

Razon, L. F. (2013). Life cycle analysis of an alternative to the haber-bosch process: Non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environmental Progress & Sustainable Energy, 33(2), 618-624. doi:10.1002/ep.11817

Guo, Z., Sun, Y., Pan, S.-Y., & Chiang, P.-C. (2019). Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. International Journal of Environmental Research and Public Health, 16(7), 1282. doi:10.3390/ijerph16071282

Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2-11. doi:10.1016/j.chemosphere.2014.10.021 [+]
Razon, L. F. (2013). Life cycle analysis of an alternative to the haber-bosch process: Non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environmental Progress & Sustainable Energy, 33(2), 618-624. doi:10.1002/ep.11817

Guo, Z., Sun, Y., Pan, S.-Y., & Chiang, P.-C. (2019). Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. International Journal of Environmental Research and Public Health, 16(7), 1282. doi:10.3390/ijerph16071282

Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2-11. doi:10.1016/j.chemosphere.2014.10.021

Martí, N., Barat, R., Seco, A., Pastor, L., & Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346. doi:10.1016/j.jenvman.2016.12.074

Aguado, D., Barat, R., Bouzas, A., Seco, A., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of The Total Environment, 672, 88-96. doi:10.1016/j.scitotenv.2019.03.485

Robles, Á., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Giménez, J. B., … Seco, A. (2020). New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, 122673. doi:10.1016/j.biortech.2019.122673

Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P. A., Tack, F. M. G., & Meers, E. (2016). Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste and Biomass Valorization, 8(1), 21-40. doi:10.1007/s12649-016-9642-x

Darestani, M., Haigh, V., Couperthwaite, S. J., Millar, G. J., & Nghiem, L. D. (2017). Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. Journal of Environmental Chemical Engineering, 5(2), 1349-1359. doi:10.1016/j.jece.2017.02.016

Daguerre-Martini, S., Vanotti, M. B., Rodriguez-Pastor, M., Rosal, A., & Moral, R. (2018). Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Research, 137, 201-210. doi:10.1016/j.watres.2018.03.013

Younas, M., Bocquet, S. D., & Sanchez, J. (2008). Extraction of aroma compounds in a HFMC: Dynamic modelling and simulation. Journal of Membrane Science, 323(2), 386-394. doi:10.1016/j.memsci.2008.06.045

Qiu, D., Wu, Z., Huang, S.-M., Ye, W.-B., Chen, X., Luo, J., & Yang, M. (2017). Laminar flow and heat transfer in an internally-cooled hexagonal parallel-plate membrane channel (IHPMC). Applied Thermal Engineering, 124, 767-780. doi:10.1016/j.applthermaleng.2017.06.079

Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492

Garcia-González, M. C., & Vanotti, M. B. (2015). Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH. Waste Management, 38, 455-461. doi:10.1016/j.wasman.2015.01.021

Li, H., Wang, W., & Zhang, Y. (2014). Preparation and characterization of high-selectivity hollow fiber composite nanofiltration membrane by two-way coating technique. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41187

Wang, Z., Gong, H., Zhang, Y., Liang, P., & Wang, K. (2017). Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process. Chemical Engineering Journal, 316, 1-6. doi:10.1016/j.cej.2017.01.082

Wett, B., Nyhuis, G., Takács, I., & Murthy, S. (2010). Development of Enhanced Deammonification Selector. Proceedings of the Water Environment Federation, 2010(10), 5917-5926. doi:10.2175/193864710798194139

Wickramasinghe, S. R., Semmens, M. J., & Cussler, E. L. (1993). Hollow fiber modules made with hollow fiber fabric. Journal of Membrane Science, 84(1-2), 1-14. doi:10.1016/0376-7388(93)85046-y

Ashrafizadeh, S. N., & Khorasani, Z. (2010). Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chemical Engineering Journal, 162(1), 242-249. doi:10.1016/j.cej.2010.05.036

Tan, X., Tan, S. P., Teo, W. K., & Li, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271(1-2), 59-68. doi:10.1016/j.memsci.2005.06.057

Nosratinia, F., Ghadiri, M., & Ghahremani, H. (2014). Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors. Journal of Industrial and Engineering Chemistry, 20(5), 2958-2963. doi:10.1016/j.jiec.2013.10.065

Licon, E., Reig, M., Villanova, P., Valderrama, C., Gibert, O., & Cortina, J. L. (2014). Ammonium removal by liquid–liquid membrane contactors in water purification process for hydrogen production. Desalination and Water Treatment, 56(13), 3607-3616. doi:10.1080/19443994.2014.974216

Nagy, J., Kaljunen, J., & Toth, A. J. (2019). Nitrogen recovery from wastewater and human urine with hydrophobic gas separation membrane: experiments and modelling. Chemical Papers, 73(8), 1903-1915. doi:10.1007/s11696-019-00740-x

Moosbrugger, R. E., Wentzel, M. C., Ekama, G. A., & Marais, G. v. R. (1993). A 5 pH Point Titration Method for Determining the Carbonate and SCFA Weak Acid/Bases in Anaerobic Systems. Water Science and Technology, 28(2), 237-245. doi:10.2166/wst.1993.0112

Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009

Kartohardjono, S., Iwan Fermi, M., Yuliusman, Y., Elkardiana, K., Putra Sangaji, A., & Maghfirwan Ramadhan, A. (2015). The Removal of Dissolved Ammonia from Wastewater through a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Technology, 6(7), 1146. doi:10.14716/ijtech.v6i7.1845

ZHENG, J., DAI, Z., WONG, F., & XU, Z. (2005). Shell side mass transfer in a transverse flow hollow fiber membrane contactor. Journal of Membrane Science, 261(1-2), 114-120. doi:10.1016/j.memsci.2005.02.035

Qu, D., Sun, D., Wang, H., & Yun, Y. (2013). Experimental study of ammonia removal from water by modified direct contact membrane distillation. Desalination, 326, 135-140. doi:10.1016/j.desal.2013.07.021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem