- -

Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations

Mostrar el registro completo del ítem

Slawek, A.; Vicent-Luna, JM.; Ogorzaly, K.; Valencia Valencia, S.; Rey Garcia, F.; Makowski, W.; Calero, S. (2019). Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations. The Journal of Physical Chemistry C. 123(49):29665-29678. https://doi.org/10.1021/acs.jpcc.9b07907

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161847

Ficheros en el ítem

Metadatos del ítem

Título: Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations
Autor: Slawek, Andrzej Vicent-Luna, José Manuel Ogorzaly, Karolina Valencia Valencia, Susana Rey Garcia, Fernando Makowski, Waclaw Calero, Sofia
Fecha difusión:
Resumen:
[EN] Adsorption of n-alkanes from pentane to decane (C5¿C10) in zeolites LTA (ITQ-29 and 5A) and faujasite (FAU, dealuminated high-silica Na-FAU, NaY, and NaX) as well as branched hexane isomers in FAU was investigated by ...[+]
Derechos de uso: Cerrado
Fuente:
The Journal of Physical Chemistry C. (issn: 1932-7447 )
DOI: 10.1021/acs.jpcc.9b07907
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.jpcc.9b07907
Código del Proyecto:
info:eu-repo/grantAgreement/NCN//2016%2F21%2FN%2FST5%2F00868/
info:eu-repo/grantAgreement/NCN//2018%2F28%2FT%2FST5%2F00274/
info:eu-repo/grantAgreement/MINECO//CTQ2016-80206-P/ES/CONTROL AD HOC DE LA FLEXIBILIDAD DE ESTRUCTURAS POROSAS PARA SU USO EN CAPTURA Y LIBERACION DE FLUIDOS/
info:eu-repo/grantAgreement/Junta de Andalucía//FQM-1851/ES/CAPTURA, ALMACENAMIENTO Y FOTOCONVERSIÓN DE DIÓXIDO DE CARBONO PROCEDENTE DE EMISIONES INDUSTRIALES/
Agradecimientos:
This work was supported by the National Science Centre, Poland, grant no. 2016/21/N/ST5/00868, and from Spanish Ministerio de Economiay Competitividad (CTQ2016-80206P), and by the Andalucia Region (FQM-1851). The authors ...[+]
Tipo: Artículo

References

Hattori, H. (1995). Heterogeneous Basic Catalysis. Chemical Reviews, 95(3), 537-558. doi:10.1021/cr00035a005

BARTHOMEUF∗, D. (1996). Basic Zeolites: Characterization and Uses in Adsorption and Catalysis. Catalysis Reviews, 38(4), 521-612. doi:10.1080/01614949608006465

Sánchez-Sánchez, M., & Blasco, T. (2002). Investigation on the Nature of the Adsorption Sites of Pyrrole in Alkali-Exchanged Zeolite Y by Nuclear Magnetic Resonance in Combination with Infrared Spectroscopy. Journal of the American Chemical Society, 124(13), 3443-3456. doi:10.1021/ja011912j [+]
Hattori, H. (1995). Heterogeneous Basic Catalysis. Chemical Reviews, 95(3), 537-558. doi:10.1021/cr00035a005

BARTHOMEUF∗, D. (1996). Basic Zeolites: Characterization and Uses in Adsorption and Catalysis. Catalysis Reviews, 38(4), 521-612. doi:10.1080/01614949608006465

Sánchez-Sánchez, M., & Blasco, T. (2002). Investigation on the Nature of the Adsorption Sites of Pyrrole in Alkali-Exchanged Zeolite Y by Nuclear Magnetic Resonance in Combination with Infrared Spectroscopy. Journal of the American Chemical Society, 124(13), 3443-3456. doi:10.1021/ja011912j

Primo, A., & Garcia, H. (2014). Zeolites as catalysts in oil refining. Chem. Soc. Rev., 43(22), 7548-7561. doi:10.1039/c3cs60394f

Musyoka, N. M., Petrik, L. F., Hums, E., Kuhnt, A., & Schwieger, W. (2013). Thermal stability studies of zeolites A and X synthesized from South African coal fly ash. Research on Chemical Intermediates, 41(2), 575-582. doi:10.1007/s11164-013-1211-3

Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. doi:10.1016/s0167-2738(00)00632-9

Rees, L. V. C. (1970). Chapter 9. Ion exchange in zeolites. Annual Reports on the Progress of Chemistry, Section A: General Physical and Inorganic Chemistry, 67, 191. doi:10.1039/gr9706700191

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

YASHIMA, T. (1972). Alkylation on synthetic zeolites III. Alkylation of toluene with methanol and formaldehyde on alkali cation exchanged zeolites. Journal of Catalysis, 26(3), 303-312. doi:10.1016/0021-9517(72)90088-7

Tsuji, H., Yagi, F., & Hattori, H. (1991). Basic Sites on Alkali Ion-added Zeolite. Chemistry Letters, 20(11), 1881-1884. doi:10.1246/cl.1991.1881

DUDZIK, Z. (1978). The specific catalytic activity of sodium faujasites in H2S oxidation. Journal of Catalysis, 51(3), 345-354. doi:10.1016/0021-9517(78)90272-5

Ackley, M. (2003). Application of natural zeolites in the purification and separation of gases. Microporous and Mesoporous Materials, 61(1-3), 25-42. doi:10.1016/s1387-1811(03)00353-6

Csicsery, S. M. (1984). Shape-selective catalysis in zeolites. Zeolites, 4(3), 202-213. doi:10.1016/0144-2449(84)90024-1

Song, J., Liu, M., & Zhang, Y. (2014). Ion-exchange adsorption of calcium ions from water and geothermal water with modified zeolite A. AIChE Journal, 61(2), 640-654. doi:10.1002/aic.14671

Munthali, M., Johan, E., & Matsue, N. (2015). Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Exchangeable Cation Species of Zeolites. Environments, 2(4), 91-104. doi:10.3390/environments2010091

Gelb, L. D., & Gubbins, K. E. (1998). Pore Size Distributions in Porous Glasses:  A Computer Simulation Study. Langmuir, 15(2), 305-308. doi:10.1021/la9808418

Reed, T. B., & Breck, D. W. (1956). Crystalline Zeolites. II. Crystal Structure of Synthetic Zeolite, Type A. Journal of the American Chemical Society, 78(23), 5972-5977. doi:10.1021/ja01604a002

Szostak, R. Molecular Sieves: Principles of Synthesis and Identification; Blackie Academic & Professional: London, 1998; p 360.

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

Alkandary, J. A. M., Al-Ammeri, R., & Salem, A. B. S. H. (1995). Adsorption Equilibria of Normal Paraffins on 5A Molecular Sieve. Separation Science and Technology, 30(16), 3195-3209. doi:10.1080/01496399508013138

Águeda, V. I., Uguina, M. A., Delgado, J. A., Holik, M. T., Aranda, D., López, I. D., … Peláez, J. (2016). Equilibrium and kinetics of adsorption of high molecular weight n-paraffins on a calcium LTA molecular sieve. Adsorption, 23(2-3), 257-269. doi:10.1007/s10450-016-9846-1

Silva, J. A. C., & Rodrigues, A. E. (1997). Sorption and Diffusion of n-Pentane in Pellets of 5A Zeolite. Industrial & Engineering Chemistry Research, 36(2), 493-500. doi:10.1021/ie960477c

Silva, J. A. C., & Rodrigues, A. E. (1997). Equilibrium and kinetics ofn– hexane sorption in pellets of 5A zeolite. AIChE Journal, 43(10), 2524-2534. doi:10.1002/aic.690431014

Miano, F. (1996). Adsorption of hydrocarbon vapour mixtures onto zeolite 5A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 110(1), 95-104. doi:10.1016/0927-7757(95)03439-0

Gribov, E. N., Sastre, G., & Corma, A. (2005). Influence of Pore Dimension and Sorption Configuration on the Heat of Sorption of Hexane on Monodimensional Siliceous Zeolites. The Journal of Physical Chemistry B, 109(50), 23794-23803. doi:10.1021/jp052462a

Hedin, N., DeMartin, G. J., Strohmaier, K. G., & Reyes, S. C. (2007). PFG NMR self-diffusion of propylene in ITQ-29, CaA and NaCaA: Window size and cation effects. Microporous and Mesoporous Materials, 98(1-3), 182-188. doi:10.1016/j.micromeso.2006.08.017

Robson, H. (1989). High-Silica Faujasite by Direct Synthesis. Zeolite Synthesis, 436-447. doi:10.1021/bk-1989-0398.ch030

Jänchen, J., & Stach, H. (1985). Dependence of the adsorption equilibrium of n-decane on the -ratio of faujasite-zeolites. Zeolites, 5(1), 57-59. doi:10.1016/0144-2449(85)90014-4

Stach, H., Lohse, U., Thamm, H., & Schirmer, W. (1986). Adsorption equilibria of hydrocarbons on highly dealuminated zeolites. Zeolites, 6(2), 74-90. doi:10.1016/s0144-2449(86)80001-x

Hampson, J. A., & Rees, L. V. C. (1993). Adsorption of ethane and propane in silicalite-1 and zeolite NaY: determination of single components, mixture and partial adsorption data using an isosteric system. Journal of the Chemical Society, Faraday Transactions, 89(16), 3169. doi:10.1039/ft9938903169

Tarek, M., Kahn, R., & de Lara, E. C. (1995). Modelization of experimental isotherms of n-alkanes in NaX zeolite. Zeolites, 15(1), 67-72. doi:10.1016/0144-2449(94)00008-g

Denayer, J. F. M., & Baron, G. V. (1997). Adsorption of normal and branched paraffins in faujasite zeolites NaY, HY, Pt/NaY and USY. Adsorption, 3(4), 251-265. doi:10.1007/bf01653628

Daems, I., Leflaive, P., Méthivier, A., Baron, G. V., & Denayer, J. F. M. (2006). Influence of Si:Al-ratio of faujasites on the adsorption of alkanes, alkenes and aromatics. Microporous and Mesoporous Materials, 96(1-3), 149-156. doi:10.1016/j.micromeso.2006.06.029

Bläker, C., Pasel, C., Luckas, M., Dreisbach, F., & Bathen, D. (2017). Investigation of load-dependent heat of adsorption of alkanes and alkenes on zeolites and activated carbon. Microporous and Mesoporous Materials, 241, 1-10. doi:10.1016/j.micromeso.2016.12.037

Makowski, W., & Ogorzałek, Ł. (2007). Determination of the adsorption heat of n-hexane and n-heptane on zeolites beta, L, 5A, 13X, Y and ZSM-5 by means of quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA). Thermochimica Acta, 465(1-2), 30-39. doi:10.1016/j.tca.2007.09.002

Makowski, W., Mlekodaj, K., Gil, B., Roth, W. J., Marszałek, B., Kubu, M., … Horňáček, M. (2014). Application of quasi-equilibrated thermodesorption of linear and di-branched paraffin molecules for detailed porosity characterization of the mono-layered zeolite MCM-56, in comparison with MCM-22 and ZSM-5. Dalton Trans., 43(27), 10574-10583. doi:10.1039/c4dt00232f

Sławek, A., Vicent-Luna, J. M., Marszałek, B., Makowski, W., & Calero, S. (2017). Quasi-Equilibrated Thermodesorption Combined with Molecular Simulation for Adsorption and Separation of Hexane Isomers in Zeolites MFI and MEL. The Journal of Physical Chemistry C, 121(35), 19226-19238. doi:10.1021/acs.jpcc.7b05347

Makowski, W., Mańko, M., Zabierowski, P., Mlekodaj, K., Majda, D., Szklarzewicz, J., & Łasocha, W. (2014). Unusual adsorption behavior of volatile hydrocarbons on MOF-5 studied using thermodesorption methods. Thermochimica Acta, 587, 1-10. doi:10.1016/j.tca.2014.04.016

Roztocki, K., Lupa, M., Sławek, A., Makowski, W., Senkovska, I., Kaskel, S., & Matoga, D. (2018). Water-Stable Metal–Organic Framework with Three Hydrogen-Bond Acceptors: Versatile Theoretical and Experimental Insights into Adsorption Ability and Thermo-Hydrolytic Stability. Inorganic Chemistry, 57(6), 3287-3296. doi:10.1021/acs.inorgchem.8b00078

Sławek, A., Vicent-Luna, J. M., Marszałek, B., Gil, B., Morris, R. E., Makowski, W., & Calero, S. (2018). Gate-Opening Mechanism of Hydrophilic–Hydrophobic Metal–Organic Frameworks: Molecular Simulations and Quasi-Equilibrated Desorption. Chemistry of Materials, 30(15), 5116-5127. doi:10.1021/acs.chemmater.8b01603

Makowski, W., Chmielarz, L., & Kuśtrowski, P. (2009). Determination of the pore size distribution of mesoporous silicas by means of quasi-equilibrated thermodesorption of n-nonane. Microporous and Mesoporous Materials, 120(3), 257-262. doi:10.1016/j.micromeso.2008.11.014

Mańko, M., Gil, B., Janus, R., Kuśtrowski, P., & Makowski, W. (2010). Characterization of the porosity and surface chemistry of mesoporous silicas by quasi-equilibrated thermodesorption of 1-butanol and n-nonane. Thermochimica Acta, 511(1-2), 82-88. doi:10.1016/j.tca.2010.07.028

Dubbeldam, D., Torres-Knoop, A., & Walton, K. S. (2013). On the inner workings of Monte Carlo codes. Molecular Simulation, 39(14-15), 1253-1292. doi:10.1080/08927022.2013.819102

Dubbeldam, D., Calero, S., Vlugt, T. J. H., Krishna, R., Maesen, T. L. M., & Smit, B. (2004). United Atom Force Field for Alkanes in Nanoporous Materials. The Journal of Physical Chemistry B, 108(33), 12301-12313. doi:10.1021/jp0376727

Calero, S., Dubbeldam, D., Krishna, R., Smit, B., Vlugt, T. J. H., Denayer, J. F. M., … Maesen, T. L. M. (2004). Understanding the Role of Sodium during Adsorption:  A Force Field for Alkanes in Sodium-Exchanged Faujasites. Journal of the American Chemical Society, 126(36), 11377-11386. doi:10.1021/ja0476056

García-Pérez, E., Dubbeldam, D., Maesen, T. L. M., & Calero, S. (2006). Influence of Cation Na/Ca Ratio on Adsorption in LTA 5A:  A Systematic Molecular Simulation Study of Alkane Chain Length. The Journal of Physical Chemistry B, 110(47), 23968-23976. doi:10.1021/jp064971y

Wender, A., Barreau, A., Lefebvre, C., Di Lella, A., Boutin, A., Ungerer, P., & Fuchs, A. H. (2007). Adsorption of n-alkanes in faujasite zeolites: molecular simulation study and experimental measurements. Adsorption, 13(5-6), 439-451. doi:10.1007/s10450-007-9036-2

Sławek, A., Vicent-Luna, J. M., Marszałek, B., Balestra, S. R. G., Makowski, W., & Calero, S. (2016). Adsorption of n-Alkanes in MFI and MEL: Quasi-Equilibrated Thermodesorption Combined with Molecular Simulations. The Journal of Physical Chemistry C, 120(44), 25338-25350. doi:10.1021/acs.jpcc.6b06957

Sławek, A., Vicent-Luna, J. M., Marszałek, B., Makowski, W., & Calero, S. (2017). Ordering of n-Alkanes Adsorbed in the Micropores of AlPO4-5: A Combined Molecular Simulations and Quasi-Equilibrated Thermodesorption Study. The Journal of Physical Chemistry C, 121(45), 25292-25302. doi:10.1021/acs.jpcc.7b08927

Datka, J., & Gil, B. (1994). Heterogeneity of OH Groups in Faujasites Studied by IR Spectroscopy. Journal of Catalysis, 145(2), 372-376. doi:10.1006/jcat.1994.1046

Luna-Triguero, A., Sławek, A., Huinink, H. P., Vlugt, T. J. H., Poursaeidesfahani, A., Vicent-Luna, J. M., & Calero, S. (2019). Enhancing the Water Capacity in Zr-Based Metal–Organic Framework for Heat Pump and Atmospheric Water Generator Applications. ACS Applied Nano Materials, 2(5), 3050-3059. doi:10.1021/acsanm.9b00416

Makowski, W. (2007). Quasi-equilibrated temperature programmed desorption and adsorption: A new method for determination of the isosteric adsorption heat. Thermochimica Acta, 454(1), 26-32. doi:10.1016/j.tca.2006.12.015

Martin, M. G., & Siepmann, J. I. (1999). Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes. The Journal of Physical Chemistry B, 103(21), 4508-4517. doi:10.1021/jp984742e

Caremans, T. P., van Erp, T. S., Dubbeldam, D., Castillo, J. M., Martens, J. A., & Calero, S. (2010). Enantioselective Adsorption Characteristics of Aluminum-Substituted MFI Zeolites. Chemistry of Materials, 22(16), 4591-4601. doi:10.1021/cm100672u

Baker, J. (1986). An algorithm for the location of transition states. Journal of Computational Chemistry, 7(4), 385-395. doi:10.1002/jcc.540070402

Sanders, M. J., Leslie, M., & Catlow, C. R. A. (1984). Interatomic potentials for SiO2. Journal of the Chemical Society, Chemical Communications, (19), 1271. doi:10.1039/c39840001271

Jackson, R. A., & Catlow, C. R. A. (1988). Computer Simulation Studies of Zeolite Structure. Molecular Simulation, 1(4), 207-224. doi:10.1080/08927028808080944

Adams, J. M., & Haselden, D. A. (1984). The structure of dehydrated zeolite 5A () by neutron profile refinement. Journal of Solid State Chemistry, 51(1), 83-90. doi:10.1016/0022-4596(84)90318-9

Olson, D. H. (1995). The crystal structure of dehydrated NaX. Zeolites, 15(5), 439-443. doi:10.1016/0144-2449(95)00029-6

Engelhardt, G. (1997). Cation location in dehydrated zeolite NaY revisited: SI position is displaced from the center of the hexagonal prism. Microporous Materials, 12(4-6), 369-373. doi:10.1016/s0927-6513(97)00069-2

Widom, B. (1963). Some Topics in the Theory of Fluids. The Journal of Chemical Physics, 39(11), 2808-2812. doi:10.1063/1.1734110

Düren, T., Millange, F., Férey, G., Walton, K. S., & Snurr, R. Q. (2007). Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks. The Journal of Physical Chemistry C, 111(42), 15350-15356. doi:10.1021/jp074723h

Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2015). RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2), 81-101. doi:10.1080/08927022.2015.1010082

Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., & Siemieniewska, T. (2016). Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. IUPAC Standards Online. doi:10.1515/iupac.57.0007

Paoli, H., Corradi-Marchesi, E., Rebours, B., Ducreux, O., & Jobic, H. (2004). Long-chain paraffins adsorption over 5A zeolites. Studies in Surface Science and Catalysis, 1950-1956. doi:10.1016/s0167-2991(04)80732-8

Sivasankar, N., & Vasudevan, S. (2005). Adsorption of n-Hexane in Zeolite-5A:  A Temperature-Programmed Desorption and IR-Spectroscopic Study. The Journal of Physical Chemistry B, 109(32), 15417-15421. doi:10.1021/jp0518714

Sławek, A., Grzybowska, K., Vicent-Luna, J. M., Makowski, W., & Calero, S. (2018). Adsorption of Cyclohexane in Pure Silica Zeolites: High-Throughput Computational Screening Validated by Experimental Data. ChemPhysChem, 19(24), 3364-3371. doi:10.1002/cphc.201800968

NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/ (accessed Sept 24, 2019).

García-Sánchez, A., Dubbeldam, D., & Calero, S. (2010). Modeling Adsorption and Self-Diffusion of Methane in LTA Zeolites: The Influence of Framework Flexibility. The Journal of Physical Chemistry C, 114(35), 15068-15074. doi:10.1021/jp1059215

Gobin, O. C., Reitmeier, S. J., Jentys, A., & Lercher, J. A. (2010). Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. The Journal of Physical Chemistry C, 115(4), 1171-1179. doi:10.1021/jp106474x

Smit, B., & Maesen, T. L. M. (1995). Commensurate ‘freezing’ of alkanes in the channels of a zeolite. Nature, 374(6517), 42-44. doi:10.1038/374042a0

Krishna, R., Smit, B., & Calero, S. (2002). Entropy effects during sorption of alkanes in zeolites. Chemical Society Reviews, 31(3), 185-194. doi:10.1039/b101267n

Min, J. G., Luna-Triguero, A., Byun, Y., Balestra, S. R. G., Vicent-Luna, J. M., Calero, S., … Camblor, M. A. (2018). Stepped Propane Adsorption in Pure-Silica ITW Zeolite. Langmuir, 34(16), 4774-4779. doi:10.1021/acs.langmuir.8b00628

Poursaeidesfahani, A., Torres-Knoop, A., Rigutto, M., Nair, N., Dubbeldam, D., & Vlugt, T. J. H. (2016). Computation of the Heat and Entropy of Adsorption in Proximity of Inflection Points. The Journal of Physical Chemistry C, 120(3), 1727-1738. doi:10.1021/acs.jpcc.5b11606

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem