- -

A general class of four parametric with and without memory iterative methods for nonlinear equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A general class of four parametric with and without memory iterative methods for nonlinear equations

Mostrar el registro completo del ítem

Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Rafi, A. (2019). A general class of four parametric with and without memory iterative methods for nonlinear equations. Journal of Mathematical Chemistry. 57(5):1448-1471. https://doi.org/10.1007/s10910-018-00996-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161855

Ficheros en el ítem

Metadatos del ítem

Título: A general class of four parametric with and without memory iterative methods for nonlinear equations
Autor: Zafar, Fiza Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón Rafi, Aneeqa
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we have constructed a derivative-free weighted eighth-order iterative class of methods with and without-memory for solving nonlinear equations. These methods are optimal as they satisfy Kung-Traub's ...[+]
Palabras clave: Nonlinear equations , Iterative method with and without memory , Basin of attraction , Order of convergence
Derechos de uso: Cerrado
Fuente:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-018-00996-w
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10910-018-00996-w
Título del congreso: 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018)
Lugar del congreso: Rota, Spain
Fecha congreso: Julio 09-14,2018
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.
Tipo: Artículo Comunicación en congreso

References

F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World 2013, 11 (2013)

A. Cordero, M. Junjua, J.R. Torregrosa, N. Yasmin, F. Zafar, Efficient four parametric with and without-memory iterative methods possessing high efficiency indices. Math. Probl. Eng. 2018, 12 (2018)

J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, NJ, 1972) [+]
F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World 2013, 11 (2013)

A. Cordero, M. Junjua, J.R. Torregrosa, N. Yasmin, F. Zafar, Efficient four parametric with and without-memory iterative methods possessing high efficiency indices. Math. Probl. Eng. 2018, 12 (2018)

J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, NJ, 1972)

J. Herzberger, Über Matrixdarstellungen für Iterationverfahren bei nichtlinearen Gleichungen. Computing 12(3), 215–222 (1974)

L.O. Jay, A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)

R.F. King, A family of fourth order methods for non-linear equations. SIAM J. Numer. Anal. 10(5), 876–879 (1973)

T. Lotfi, P. Assari, New three- and four-parametric iterative with-memory methods with efficiency index near 2. Appl. Math. 270, 1004–1010 (2015)

M. Shacham, Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986)

I.F. Steffensen, Remarks on iteration. Skand. Aktuarietidskr. 16, 64–72 (1933)

J.F. Traub, Iterative Methods for the Solution of Equations (Prentice Hall, New York, 1964)

F. Zafar, S. Akram, N. Yasmin, M. Junjua, On the construction of three step derivative free four-parametric methods with accelerated order of convergence. J. Nonlinear Sci. Appl. 9, 4542–4553 (2016)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem