- -

A general class of four parametric with and without memory iterative methods for nonlinear equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A general class of four parametric with and without memory iterative methods for nonlinear equations

Show full item record

Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Rafi, A. (2019). A general class of four parametric with and without memory iterative methods for nonlinear equations. Journal of Mathematical Chemistry. 57(5):1448-1471. https://doi.org/10.1007/s10910-018-00996-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161855

Files in this item

Item Metadata

Title: A general class of four parametric with and without memory iterative methods for nonlinear equations
Author: Zafar, Fiza Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón Rafi, Aneeqa
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this paper, we have constructed a derivative-free weighted eighth-order iterative class of methods with and without-memory for solving nonlinear equations. These methods are optimal as they satisfy Kung-Traub's ...[+]
Subjects: Nonlinear equations , Iterative method with and without memory , Basin of attraction , Order of convergence
Copyrigths: Cerrado
Source:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-018-00996-w
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10910-018-00996-w
Conference name: 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018)
Conference place: Rota, Spain
Conference date: Julio 09-14,2018
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
Thanks:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.
Type: Artículo Comunicación en congreso

References

F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World 2013, 11 (2013)

A. Cordero, M. Junjua, J.R. Torregrosa, N. Yasmin, F. Zafar, Efficient four parametric with and without-memory iterative methods possessing high efficiency indices. Math. Probl. Eng. 2018, 12 (2018)

J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, NJ, 1972) [+]
F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World 2013, 11 (2013)

A. Cordero, M. Junjua, J.R. Torregrosa, N. Yasmin, F. Zafar, Efficient four parametric with and without-memory iterative methods possessing high efficiency indices. Math. Probl. Eng. 2018, 12 (2018)

J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, NJ, 1972)

J. Herzberger, Über Matrixdarstellungen für Iterationverfahren bei nichtlinearen Gleichungen. Computing 12(3), 215–222 (1974)

L.O. Jay, A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)

R.F. King, A family of fourth order methods for non-linear equations. SIAM J. Numer. Anal. 10(5), 876–879 (1973)

T. Lotfi, P. Assari, New three- and four-parametric iterative with-memory methods with efficiency index near 2. Appl. Math. 270, 1004–1010 (2015)

M. Shacham, Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986)

I.F. Steffensen, Remarks on iteration. Skand. Aktuarietidskr. 16, 64–72 (1933)

J.F. Traub, Iterative Methods for the Solution of Equations (Prentice Hall, New York, 1964)

F. Zafar, S. Akram, N. Yasmin, M. Junjua, On the construction of three step derivative free four-parametric methods with accelerated order of convergence. J. Nonlinear Sci. Appl. 9, 4542–4553 (2016)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record