- -

Multipoint fraccional iterative methods with (2a+1)th-order of convergence for solving nonlinear problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multipoint fraccional iterative methods with (2a+1)th-order of convergence for solving nonlinear problems

Mostrar el registro completo del ítem

Candelario, G.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). Multipoint fraccional iterative methods with (2a+1)th-order of convergence for solving nonlinear problems. Mathematics. 8(3):1-15. https://doi.org/10.3390/math8030452

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162239

Ficheros en el ítem

Metadatos del ítem

Título: Multipoint fraccional iterative methods with (2a+1)th-order of convergence for solving nonlinear problems
Autor: Candelario, Giro Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional ...[+]
Palabras clave: Nonlinear equations , Fractional derivatives , Multistep methods , Convergence , Stability
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8030452
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8030452
Código del Proyecto:
info:eu-repo/grantAgreement/FONDOCYT//029-2018/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE) and FONDOCYT 029-2018 Republica Dominicana.
Tipo: Artículo

References

Mathai, A. M., & Haubold, H. J. (2017). Fractional and Multivariable Calculus. Springer Optimization and Its Applications. doi:10.1007/978-3-319-59993-9

Altaf Khan, M., Ullah, S., & Farhan, M. (2019). The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 4(1), 134-146. doi:10.3934/math.2019.1.134

Akgül, A., Cordero, A., & Torregrosa, J. R. (2019). A fractional Newton method with 2αth-order of convergence and its stability. Applied Mathematics Letters, 98, 344-351. doi:10.1016/j.aml.2019.06.028 [+]
Mathai, A. M., & Haubold, H. J. (2017). Fractional and Multivariable Calculus. Springer Optimization and Its Applications. doi:10.1007/978-3-319-59993-9

Altaf Khan, M., Ullah, S., & Farhan, M. (2019). The dynamics of Zika virus with Caputo fractional derivative. AIMS Mathematics, 4(1), 134-146. doi:10.3934/math.2019.1.134

Akgül, A., Cordero, A., & Torregrosa, J. R. (2019). A fractional Newton method with 2αth-order of convergence and its stability. Applied Mathematics Letters, 98, 344-351. doi:10.1016/j.aml.2019.06.028

Cordero, A., Girona, I., & Torregrosa, J. R. (2019). A Variant of Chebyshev’s Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry, 11(8), 1017. doi:10.3390/sym11081017

Odibat, Z. M., & Shawagfeh, N. T. (2007). Generalized Taylor’s formula. Applied Mathematics and Computation, 186(1), 286-293. doi:10.1016/j.amc.2006.07.102

Trujillo, J. J., Rivero, M., & Bonilla, B. (1999). On a Riemann–Liouville Generalized Taylor’s Formula. Journal of Mathematical Analysis and Applications, 231(1), 255-265. doi:10.1006/jmaa.1998.6224

Jumarie, G. (2006). Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications, 51(9-10), 1367-1376. doi:10.1016/j.camwa.2006.02.001

Lanczos, C. (1964). A Precision Approximation of the Gamma Function. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 1(1), 86-96. doi:10.1137/0701008

Magreñán, Á. A. (2014). A new tool to study real dynamics: The convergence plane. Applied Mathematics and Computation, 248, 215-224. doi:10.1016/j.amc.2014.09.061

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem