- -

Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Singh, Sukhjit es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Kumar, Abhimanyu es_ES
dc.contributor.author Gupta, D. K. es_ES
dc.date.accessioned 2021-02-24T04:31:47Z
dc.date.available 2021-02-24T04:31:47Z
dc.date.issued 2020-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162244
dc.description.abstract [EN] In this work, we performed an study about the domain of existence and uniqueness for an efficient fifth order iterative method for solving nonlinear problems treated in their infinite dimensional form. The hypotheses for the operator and starting guess are weaker than in the previous studies. We assume omega continuity condition on second order Frechet derivative. This fact it is motivated by showing different problems where the nonlinear operators that define the equation do not verify Lipschitz and Holder condition; however, these operators verify the omega condition established. Then, the semilocal convergence balls are obtained and the R-order of convergence and error bounds can be obtained by following thee main theorem. Finally, we perform a numerical experience by solving a nonlinear Hammerstein integral equations in order to show the applicability of the theoretical results by obtaining the existence and uniqueness balls. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Semilocal convergence es_ES
dc.subject Lipschitz condition es_ES
dc.subject Holder condition es_ES
dc.subject Hammerstein integral equation es_ES
dc.subject Dynamical systems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8030384 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Singh, S.; Martínez Molada, E.; Kumar, A.; Gupta, DK. (2020). Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations. Mathematics. 8(3):1-11. https://doi.org/10.3390/math8030384 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8030384 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\406773 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Hernández, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41(3-4), 433-445. doi:10.1016/s0898-1221(00)00286-8 es_ES
dc.description.references Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050 es_ES
dc.description.references Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005 es_ES
dc.description.references Hueso, J. L., & Martínez, E. (2013). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms, 67(2), 365-384. doi:10.1007/s11075-013-9795-7 es_ES
dc.description.references Zhao, Y., & Wu, Q. (2008). Newton–Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space. Applied Mathematics and Computation, 202(1), 243-251. doi:10.1016/j.amc.2008.02.004 es_ES
dc.description.references Parida, P. K., & Gupta, D. K. (2007). Recurrence relations for a Newton-like method in Banach spaces. Journal of Computational and Applied Mathematics, 206(2), 873-887. doi:10.1016/j.cam.2006.08.027 es_ES
dc.description.references Parida, P. K., & Gupta, D. K. (2008). Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces. Journal of Mathematical Analysis and Applications, 345(1), 350-361. doi:10.1016/j.jmaa.2008.03.064 es_ES
dc.description.references Cordero, A., Ezquerro, J. A., Hernández-Verón, M. A., & Torregrosa, J. R. (2015). On the local convergence of a fifth-order iterative method in Banach spaces. Applied Mathematics and Computation, 251, 396-403. doi:10.1016/j.amc.2014.11.084 es_ES
dc.description.references Argyros, I. K., & Hilout, S. (2013). On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 245, 1-9. doi:10.1016/j.cam.2012.12.002 es_ES
dc.description.references Argyros, I. K., George, S., & Magreñán, Á. A. (2015). Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order. Journal of Computational and Applied Mathematics, 282, 215-224. doi:10.1016/j.cam.2014.12.023 es_ES
dc.description.references Wang, X., Kou, J., & Gu, C. (2012). Semilocal Convergence of a Class of Modified Super-Halley Methods in Banach Spaces. Journal of Optimization Theory and Applications, 153(3), 779-793. doi:10.1007/s10957-012-9985-9 es_ES
dc.description.references Argyros, I. K., & Magreñán, Á. A. (2015). A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numerical Algorithms, 71(1), 1-23. doi:10.1007/s11075-015-9981-x es_ES
dc.description.references Wu, Q., & Zhao, Y. (2007). Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method. Applied Mathematics and Computation, 192(2), 405-412. doi:10.1016/j.amc.2007.03.018 es_ES
dc.description.references Martínez, E., Singh, S., Hueso, J. L., & Gupta, D. K. (2016). Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation, 281, 252-265. doi:10.1016/j.amc.2016.01.036 es_ES
dc.description.references Kumar, A., Gupta, D. K., Martínez, E., & Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics, 330, 732-741. doi:10.1016/j.cam.2017.02.042 es_ES
dc.description.references Singh, S., Gupta, D. K., Martínez, E., & Hueso, J. L. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 13(6), 4219-4235. doi:10.1007/s00009-016-0741-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem