Mostrar el registro sencillo del ítem
dc.contributor.author | Gutiérrez, José Manuel | es_ES |
dc.contributor.author | Hernández-Verón, Miguel Ángel | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.date.accessioned | 2021-02-24T04:32:04Z | |
dc.date.available | 2021-02-24T04:32:04Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162253 | |
dc.description.abstract | [EN] This work is devoted to Fredholm integral equations of second kind with non-separable kernels. Our strategy is to approximate the non-separable kernel by using an adequate Taylor's development. Then, we adapt an already known technique used for separable kernels to our case. First, we study the local convergence of the proposed iterative scheme, so we obtain a ball of starting points around the solution. Then, we complete the theoretical study with the semilocal convergence analysis, that allow us to obtain the domain of existence for the solution in terms of the starting point. In this case, the existence of a solution is deduced. Finally, we illustrate this study with some numerical experiments. | es_ES |
dc.description.sponsorship | This research was partially supported by a grant of the Spanish Ministerio de Ciencia, Innovacion y Universidades (Ref. PGC2018-095896-B-C21-C22). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fredholm integral equation | es_ES |
dc.subject | Iterative processes | es_ES |
dc.subject | Newton's method | es_ES |
dc.subject | Separable and non-separable kernels | es_ES |
dc.subject | Local and semilocal convergence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8101747 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/"/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Gutiérrez, JM.; Hernández-Verón, MÁ.; Martínez Molada, E. (2020). Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes. Mathematics. 8(10):1-13. https://doi.org/10.3390/math8101747 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8101747 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\422488 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Argyros, I. K. (1988). On a class of nonlinear integral equations arising in neutron transport. Aequationes Mathematicae, 36(1), 99-111. doi:10.1007/bf01837974 | es_ES |
dc.description.references | Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 | es_ES |
dc.description.references | GANESH, M., & JOSHI, M. C. (1991). Numerical Solvability of Hammerstein Integral Equations of Mixed Type. IMA Journal of Numerical Analysis, 11(1), 21-31. doi:10.1093/imanum/11.1.21 | es_ES |
dc.description.references | Anderson, B. D. O., & Kailath, T. (1971). Some Integral Equations with Nonsymmetric Separable Kernels. SIAM Journal on Applied Mathematics, 20(4), 659-669. doi:10.1137/0120065 | es_ES |
dc.description.references | Ezquerro, J. A., & Hernández, M. A. (2004). A modification of the convergence conditions for Picard’s iteration. Computational & Applied Mathematics, 23(1). doi:10.1590/s0101-82052004000100003 | es_ES |
dc.description.references | Amat, S., Ezquerro, J. A., & Hernández-Verón, M. A. (2013). Approximation of inverse operators by a new family of high-order iterative methods. Numerical Linear Algebra with Applications, 21(5), 629-644. doi:10.1002/nla.1917 | es_ES |
dc.description.references | Barikbin, M. S., Vahidi, A. R., Damercheli, T., & Babolian, E. (2020). An iterative shifted Chebyshev method for nonlinear stochastic Itô–Volterra integral equations. Journal of Computational and Applied Mathematics, 378, 112912. doi:10.1016/j.cam.2020.112912 | es_ES |
dc.description.references | Rabbani, M., Das, A., Hazarika, B., & Arab, R. (2020). Existence of solution for two dimensional nonlinear fractional integral equation by measure of noncompactness and iterative algorithm to solve it. Journal of Computational and Applied Mathematics, 370, 112654. doi:10.1016/j.cam.2019.112654 | es_ES |