- -

Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gutiérrez, José Manuel es_ES
dc.contributor.author Hernández-Verón, Miguel Ángel es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.date.accessioned 2021-02-24T04:32:04Z
dc.date.available 2021-02-24T04:32:04Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162253
dc.description.abstract [EN] This work is devoted to Fredholm integral equations of second kind with non-separable kernels. Our strategy is to approximate the non-separable kernel by using an adequate Taylor's development. Then, we adapt an already known technique used for separable kernels to our case. First, we study the local convergence of the proposed iterative scheme, so we obtain a ball of starting points around the solution. Then, we complete the theoretical study with the semilocal convergence analysis, that allow us to obtain the domain of existence for the solution in terms of the starting point. In this case, the existence of a solution is deduced. Finally, we illustrate this study with some numerical experiments. es_ES
dc.description.sponsorship This research was partially supported by a grant of the Spanish Ministerio de Ciencia, Innovacion y Universidades (Ref. PGC2018-095896-B-C21-C22). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fredholm integral equation es_ES
dc.subject Iterative processes es_ES
dc.subject Newton's method es_ES
dc.subject Separable and non-separable kernels es_ES
dc.subject Local and semilocal convergence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8101747 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/"/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Gutiérrez, JM.; Hernández-Verón, MÁ.; Martínez Molada, E. (2020). Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes. Mathematics. 8(10):1-13. https://doi.org/10.3390/math8101747 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8101747 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\422488 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Argyros, I. K. (1988). On a class of nonlinear integral equations arising in neutron transport. Aequationes Mathematicae, 36(1), 99-111. doi:10.1007/bf01837974 es_ES
dc.description.references Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0 es_ES
dc.description.references GANESH, M., & JOSHI, M. C. (1991). Numerical Solvability of Hammerstein Integral Equations of Mixed Type. IMA Journal of Numerical Analysis, 11(1), 21-31. doi:10.1093/imanum/11.1.21 es_ES
dc.description.references Anderson, B. D. O., & Kailath, T. (1971). Some Integral Equations with Nonsymmetric Separable Kernels. SIAM Journal on Applied Mathematics, 20(4), 659-669. doi:10.1137/0120065 es_ES
dc.description.references Ezquerro, J. A., & Hernández, M. A. (2004). A modification of the convergence conditions for Picard’s iteration. Computational & Applied Mathematics, 23(1). doi:10.1590/s0101-82052004000100003 es_ES
dc.description.references Amat, S., Ezquerro, J. A., & Hernández-Verón, M. A. (2013). Approximation of inverse operators by a new family of high-order iterative methods. Numerical Linear Algebra with Applications, 21(5), 629-644. doi:10.1002/nla.1917 es_ES
dc.description.references Barikbin, M. S., Vahidi, A. R., Damercheli, T., & Babolian, E. (2020). An iterative shifted Chebyshev method for nonlinear stochastic Itô–Volterra integral equations. Journal of Computational and Applied Mathematics, 378, 112912. doi:10.1016/j.cam.2020.112912 es_ES
dc.description.references Rabbani, M., Das, A., Hazarika, B., & Arab, R. (2020). Existence of solution for two dimensional nonlinear fractional integral equation by measure of noncompactness and iterative algorithm to solve it. Journal of Computational and Applied Mathematics, 370, 112654. doi:10.1016/j.cam.2019.112654 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem