- -

Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reyes Tolosa, María Dolores es_ES
dc.contributor.author Alajami, M. es_ES
dc.contributor.author Montero Reguera, Álvaro Enrique es_ES
dc.contributor.author Damonte, L.C. es_ES
dc.contributor.author Hernández Fenollosa, María De Los Ángeles es_ES
dc.date.accessioned 2021-02-25T04:49:19Z
dc.date.available 2021-02-25T04:49:19Z
dc.date.issued 2019-09-20 es_ES
dc.identifier.issn 2523-3963 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162363
dc.description.abstract [EN] The quality and properties of electrodeposited nanostructured ZnO films are improved when they are deposited on a crystal lattice-matching substrate. To this end, a highly conductive indium tin oxide substrate is covered with an interlayer of ZnO using direct-current magnetron sputtering. In this manuscript, we describe the effect of this interlayer on the morphological and optical properties of several nanostructured ZnO films grown by different electrodeposition methods. The thickness of the ZnO interlayer was varied starting from ultrathin layers of 10 nm all the way up to 230 nm as determined by ellipsonnetry. The structural and optical properties of the nanostructured ZnO films deposited on top of these interlayers were characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy and UV-visible spectroscopy. Optimum properties of the nanostructured ZnO films for application in thin-film optoelectronic devices are obtained when the ZnO interlayer has a thickness of approximately 45 nm. This is the case for all the electrodeposition methods used in this work. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof SN Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ZnO films es_ES
dc.subject Electrodeposition es_ES
dc.subject DC magnetron sputtering es_ES
dc.subject Optical properties es_ES
dc.subject Nanostructures es_ES
dc.subject Band gap energy es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s42452-019-1293-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IEDI-2016-00706/ES/IEDI-2016-00706/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Reyes Tolosa, MD.; Alajami, M.; Montero Reguera, ÁE.; Damonte, L.; Hernández Fenollosa, MDLÁ. (2019). Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films. SN Applied Sciences. 1(10):1-9. https://doi.org/10.1007/s42452-019-1293-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s42452-019-1293-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\394733 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Marotti RE, Giorgi P, Machado G, Dalchiele EA (2006) Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol Energy Mater Sol Cells 90:2356–2361 es_ES
dc.description.references Marotti RE, Guerra DN, Bello C, Machado G (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energy Mater Sol Cells 82:85–103 es_ES
dc.description.references Jin ZC, Hamberg I, Grangvist CG (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64:5117–5131 es_ES
dc.description.references Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46 es_ES
dc.description.references Kiliç B, Wang L, Ozdemir O, Lu M, Tüzemen S (2013) One-dimensional (1D) ZnO nanowires dye sensitized solar cell. J Nanosci Nanotechnol 13:333–338 es_ES
dc.description.references Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 9:1529–1598 es_ES
dc.description.references Mallampati B, Nair SV, Ruda HE, Philipose U (2015) ZnO nanowire based photoconductor with high photoconductive gain. Mater Res Soc Symp Proc 1805:720–726 es_ES
dc.description.references Benlamri M, Bothe KM, Ma AM, Shoute G, Afshar A, Sharma H, Mohammadpour A, Gupta M, Cadien KC, Tsui YY, Shankar K, Barlage DW (2014) High-mobility solution-processed zinc oxide thin films on silicon nitride. Phys Status Solidi RRL 8:871–875 es_ES
dc.description.references Galstyan V, Comini E, Ponzoni A, Sberveglieri V, Sberveglieri G (2016) ZnO quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric. Chem Sens 4:6–27 es_ES
dc.description.references Ayouchi R, Leinen D, Martin F, Gabas M, Dalchiele E, Ramos-Barrado JR (2003) Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 426:68–77 es_ES
dc.description.references Rahmane S, Aida MS, Chala A, Temam HB, Djouadi MA (2007) Elaboration of transparent undoped ZnO and Al-doped ZnO thin films by spray pyrolysis and their properties. Plasma Process Polym 4:356–358 es_ES
dc.description.references Zhu G, Zhou Y, Wang S, Yang R, Ding Y, Wang X, Bando Y, Wang ZL (2012) Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 23:055604–055610 es_ES
dc.description.references Hossein A, Kar P, Farsinezhad S, Sharma H, Shankar K (2015) Effect of sol stabilizer on the structure and electronic properties of solution-processed ZnO thin films. RSC Adv 5:87007–87018 es_ES
dc.description.references Majumder SB, Jain M, Dobal PS, Katiyar RS (2003) Investigations on solution derived aluminium doped zinc oxide thin films. Mater Sci Eng 103:16–25 es_ES
dc.description.references Gao XD, Peng F, Li XM, Yu WD, Qiu JJ (2007) Growth of highly oriented ZnO films by the two-step electrodeposition technique. J Mater Sci 42:9638–9644 es_ES
dc.description.references Dalchiele EA, Giorgi P, Marotti RE, Martín F, Ramos-Barrado JR, Ayouci R, Leinen D (2001) Electrodeposition of ZnO Thin Films on n-Si (100). Sol Energy Mater Sol Cells 70:245–254 es_ES
dc.description.references Craciun V, Elders J, Gardeniev JGE, Boyd IW (1994) Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl Phys Lett 65:2963–2965 es_ES
dc.description.references Bang KH, Hwang DK, Myoung JM (2003) Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering. Appl Surf Sci 207:359–364 es_ES
dc.description.references Hayashi Y, Kondo K, Murai K, Moriga T, Nakabayashi I, Fukumoto H, Tominag K (2004) ZnO–SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets. Vacuum 74:607–611 es_ES
dc.description.references Minami T, Nanto H, Takata S (1983) UV emission from sputtered zinc oxide thin films. Thin Solid Films 109:379–384 es_ES
dc.description.references Gu CD, Li J, Lian JS, Zheng GQ (2007) Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass. Appl Surf Sci 253:7011–7015 es_ES
dc.description.references Korber C, Suffner J, Klein A (2010) Surface energy controlled preferential orientation of thin films. J Phys D Appl Phys 43:055301–055304 es_ES
dc.description.references Dadgour HF, Endo K, De VK, Banerjee K (2010) Grain-orientation induced work function variation in nanoscale metal-gate transistors; part I: modeling, analysis, and experimental validation. IEEE Trans Electron Devices 57:2504–2514 es_ES
dc.description.references Sadewasser S, Glatzel T, Schuler S, Nishiwaki S, Kaigawa R, Lux-Steiner MC (2003) Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices. Thin Solid Films 257:431–432 es_ES
dc.description.references Boubenia S, Dahiya AS, Poulin-Vittrant G, Morini F, Nadaud K, Alquier DA (2017) Facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Sci Rep 7:15187–15196 es_ES
dc.description.references Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA (2011) The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86:101–105 es_ES
dc.description.references Bae YS, Kim DC, Ahn CH, Kim JH, Cho HK (2010) Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surf Interface Anal 42:978–982 es_ES
dc.description.references Donderis V, Hernández-Fenollosa MA, Damonte LC, Marí B, Cembrero J (2007) Enhancement of surface morphology and optical properties of nanocolumnar ZnO films. Superlattices Microstruct 42:461–467 es_ES
dc.description.references Chichibu SF, Yoshida T, Onuma T, Nakanishi H (2002) Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates. J Appl Phys 91:874–877 es_ES
dc.description.references Bouderbala M, Hamzaoui S, Amrani B, Reshak AH, Adnane M, Sahraoui T, Zerdali M (2008) Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Phys B 403:3326–3330 es_ES
dc.description.references Kishimoto S, Yamamoto T, Nakagawa Y, Ikeda K, Makino H, Yamada T (2006) Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition. Superlattices Microstruct 39:306–313 es_ES
dc.description.references Suchea M, Christoulakis S, Katharakis M, Vidakis N, Koudoumas E (2009) Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films 517:4303–4306 es_ES
dc.description.references Mridha S, Basak D (2007) Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater Res Bull 42:875–882 es_ES
dc.description.references Reyes Tolosa MD, Orozco-Messana J, Lima ANC, Camaratta R, Pascual M, Hernandez-Fenollosa MA (2011) Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 158:107–110 es_ES
dc.description.references Reyes Tolosa MD, Orozco-Messana J, Damonte LC, Hernandez-Fenollosa MA (2011) ZnO nanoestructured layers processing with morphology control by pulsed electrodeposition. J Electrochem Soc 158:452–455 es_ES
dc.description.references Laukaitis G, Lindroos S, Tamulevicius S, Leskela M (2001) Stress and morphological development of CdS and ZnS thin films during the SILAR growth on (1 0 0) GaAs. Appl Surf Sci 185:134–139 es_ES
dc.description.references Ludwig W, Ohm W, Correa-Hoyos JM, Zhao Y, Lux-Steiner MC, Gledhill S (2013) Electrodeposition parameters for ZnO nanorod arrays for photovoltaic applications. Phys Status Solidi A 210:1557–1563 es_ES
dc.description.references Chopra KL, Das SR (1983) Thin film solar cells. Springer, New York es_ES
dc.description.references Ohm W, Riedel W, Askünger Ü, Heinemann MD, Kaufmann CA, Lopez Garcia J, Izquierdo V, Fontané X, Goislard T, Lux-Steiner MC, Gledhill S (2015) An overview of technological aspects of Cu(In, Ga)Se2 solar cell architectures incorporating ZnO nanorod arrays. Phys Status Solidi A 212:76–87 es_ES
dc.description.references Wang Q, Wang G, Jie J, Han X, Xu B, Hou JG (2005) Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition described. Thin Solid Films 492:61–65 es_ES
dc.description.references Tao Y, Fu M, Zhao A, He D, Wang Y (2010) The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J Alloys Compd 489:99–102 es_ES
dc.description.references El-Zahed H, El- Korashy A, Abdel Rahman M (2003) Effect of heat treatment on some of the optical parameters of Cu9Ge11Te80 films. Vacuum 68:19–27 es_ES
dc.description.references Kumar M, Sasikumar C (2014) Electrodeposition of nanostructured ZnO thin film. Am J Mater Sci Eng 23:18–23 es_ES
dc.description.references Wang J, Chen R, Xiang L, Komarneni S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44:7357–7377 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem