- -

Perfect Absorption in Mirror-Symmetric Acoustic Metascreens

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Perfect Absorption in Mirror-Symmetric Acoustic Metascreens

Mostrar el registro completo del ítem

Romero-García, V.; Jimenez, N.; Groby, J.; Merkel, A.; Tournat, V.; Theocharis, G.; Richoux, O.... (2020). Perfect Absorption in Mirror-Symmetric Acoustic Metascreens. Physical Review Applied. 14(5):1-9. https://doi.org/10.1103/PhysRevApplied.14.054055

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162576

Ficheros en el ítem

Metadatos del ítem

Título: Perfect Absorption in Mirror-Symmetric Acoustic Metascreens
Autor: Romero-García, V. Jimenez, Noe Groby, J.-P. Merkel, A. Tournat, V. Theocharis, G. Richoux, O. Pagneux, V.
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] Mirror-symmetric acoustic metascreens producing perfect absorption independently of the incidence side are theoretically and experimentally reported in this work. The mirror-symmetric resonant building blocks of the ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Review Applied. (eissn: 2331-7019 )
DOI: 10.1103/PhysRevApplied.14.054055
Editorial:
American Physical Society
Versión del editor: https://doi.org/10.1103/PhysRevApplied.14.054055
Código del Proyecto:
info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/
info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/
info:eu-repo/grantAgreement/AEI//IJC2018-037897-I/
Agradecimientos:
We gratefully acknowledge the Agence Nationale de la Recherche (ANR) - Research Grants Council (RGC) METARoom project (Grant No. ANR-18-CE08-0021) and the HYPERMETA project, funded under the program Étoiles Montantes of ...[+]
Tipo: Artículo

References

Bliokh, K. Y., Bliokh, Y. P., Freilikher, V., Savel’ev, S., & Nori, F. (2008). Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media. Reviews of Modern Physics, 80(4), 1201-1213. doi:10.1103/revmodphys.80.1201

Luk, T. S., Campione, S., Kim, I., Feng, S., Jun, Y. C., Liu, S., … Sinclair, M. B. (2014). Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B, 90(8). doi:10.1103/physrevb.90.085411

Piper, J. R., Liu, V., & Fan, S. (2014). Total absorption by degenerate critical coupling. Applied Physics Letters, 104(25), 251110. doi:10.1063/1.4885517 [+]
Bliokh, K. Y., Bliokh, Y. P., Freilikher, V., Savel’ev, S., & Nori, F. (2008). Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media. Reviews of Modern Physics, 80(4), 1201-1213. doi:10.1103/revmodphys.80.1201

Luk, T. S., Campione, S., Kim, I., Feng, S., Jun, Y. C., Liu, S., … Sinclair, M. B. (2014). Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B, 90(8). doi:10.1103/physrevb.90.085411

Piper, J. R., Liu, V., & Fan, S. (2014). Total absorption by degenerate critical coupling. Applied Physics Letters, 104(25), 251110. doi:10.1063/1.4885517

Ma, G., Yang, M., Xiao, S., Yang, Z., & Sheng, P. (2014). Acoustic metasurface with hybrid resonances. Nature Materials, 13(9), 873-878. doi:10.1038/nmat3994

Wei, P., Croënne, C., Tak Chu, S., & Li, J. (2014). Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Applied Physics Letters, 104(12), 121902. doi:10.1063/1.4869462

Song, J. Z., Bai, P., Hang, Z. H., & Lai, Y. (2014). Acoustic coherent perfect absorbers. New Journal of Physics, 16(3), 033026. doi:10.1088/1367-2630/16/3/033026

Leroy, V., Strybulevych, A., Lanoy, M., Lemoult, F., Tourin, A., & Page, J. H. (2015). Superabsorption of acoustic waves with bubble metascreens. Physical Review B, 91(2). doi:10.1103/physrevb.91.020301

Yang, M., & Sheng, P. (2017). Sound Absorption Structures: From Porous Media to Acoustic Metamaterials. Annual Review of Materials Research, 47(1), 83-114. doi:10.1146/annurev-matsci-070616-124032

Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519

Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708

Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 108(6), 063502. doi:10.1063/1.4941338

Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328

Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4

Lee, T., Nomura, T., Dede, E. M., & Iizuka, H. (2019). Ultrasparse Acoustic Absorbers Enabling Fluid Flow and Visible-Light Controls. Physical Review Applied, 11(2). doi:10.1103/physrevapplied.11.024022

Aurégan, Y. (2018). Ultra-thin low frequency perfect sound absorber with high ratio of active area. Applied Physics Letters, 113(20), 201904. doi:10.1063/1.5063504

Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z., & Sheng, P. (2015). Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 107(10), 104104. doi:10.1063/1.4930944

Merkel, A., Theocharis, G., Richoux, O., Romero-García, V., & Pagneux, V. (2015). Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, 107(24), 244102. doi:10.1063/1.4938121

Li, J., Wang, W., Xie, Y., Popa, B.-I., & Cummer, S. A. (2016). A sound absorbing metasurface with coupled resonators. Applied Physics Letters, 109(9), 091908. doi:10.1063/1.4961671

Huang, S., Fang, X., Wang, X., Assouar, B., Cheng, Q., & Li, Y. (2018). Acoustic perfect absorbers via spiral metasurfaces with embedded apertures. Applied Physics Letters, 113(23), 233501. doi:10.1063/1.5063289

Duan, Y., Luo, J., Wang, G., Hang, Z. H., Hou, B., Li, J., … Lai, Y. (2015). Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Scientific Reports, 5(1). doi:10.1038/srep12139

Wang, X., Luo, X., Zhao, H., & Huang, Z. (2018). Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. Applied Physics Letters, 112(2), 021901. doi:10.1063/1.5018180

Ni, X., Wu, Y., Chen, Z.-G., Zheng, L.-Y., Xu, Y.-L., Nayar, P., … Chen, Y.-F. (2014). Acoustic rainbow trapping by coiling up space. Scientific Reports, 4(1). doi:10.1038/srep07038

Zhang, C., & Hu, X. (2016). Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large Bandwidth and Tunability. Physical Review Applied, 6(6). doi:10.1103/physrevapplied.6.064025

Yang, M., Chen, S., Fu, C., & Sheng, P. (2017). Optimal sound-absorbing structures. Materials Horizons, 4(4), 673-680. doi:10.1039/c7mh00129k

Lanoy, M., Guillermic, R.-M., Strybulevych, A., & Page, J. H. (2018). Broadband coherent perfect absorption of acoustic waves with bubble metascreens. Applied Physics Letters, 113(17), 171907. doi:10.1063/1.5051341

Starkey, T. A., Smith, J. D., Hibbins, A. P., Sambles, J. R., & Rance, H. J. (2017). Thin structured rigid body for acoustic absorption. Applied Physics Letters, 110(4), 041902. doi:10.1063/1.4974487

Groby, J.-P., Huang, W., Lardeau, A., & Aurégan, Y. (2015). The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, 117(12), 124903. doi:10.1063/1.4915115

Groby, J.-P., Pommier, R., & Aurégan, Y. (2016). Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4), 1660-1671. doi:10.1121/1.4945101

Aurégan, Y., & Pagneux, V. (2017). PT-Symmetric Scattering in Flow Duct Acoustics. Physical Review Letters, 118(17). doi:10.1103/physrevlett.118.174301

Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205

Chesnel, L., & Pagneux, V. (2018). Simple examples of perfectly invisible and trapped modes in waveguides. The Quarterly Journal of Mechanics and Applied Mathematics, 71(3), 297-315. doi:10.1093/qjmam/hby006

Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2

Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017

Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem