- -

On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalez-Camejo, Josue es_ES
dc.contributor.author Robles Martínez, Ángel es_ES
dc.contributor.author Seco, A. es_ES
dc.contributor.author Ferrer, J. es_ES
dc.contributor.author Ruano, M. V. es_ES
dc.date.accessioned 2021-03-01T08:08:54Z
dc.date.available 2021-03-01T08:08:54Z
dc.date.issued 2020-12-15 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162577
dc.description.abstract [EN] Microalgae performance of outdoor cultivation systems is influenced by environmental and operating dynamics. Monitoring and control systems are needed to maximise biomass productivity and nutrient recovery. The goal of this work was to corroborate that pH data could be used to monitor microalgae performance by means of data from an outdoor membrane photobioreactor (MPBR) plant. In this system, microalgae photosynthetic activity was favoured over other physical and biological processes, so that the pH data dynamics was theoretically related to the microalgae carbon uptake rate (CUR). Shortand long-term continuous operations were tested to corroborate the relationship between the first derivate of pH data dynamics (pH') and microalgae photosynthetic activity. Short-term operations showed a good correlation between gross pH' values and MPBR performance. An indicator of the maximum daily average microalgae activity was assessed by a combination of on-line pH' measurements obtained in the long-term and a microalgae growth kinetic model. Both indicators contributed to the development of advanced real-time monitoring and control systems to optimise microalgae cultivation technology. es_ES
dc.description.sponsorship Authors would like to acknowledge the Ministry of Economy and Competitiveness (Spain) for their support in Projects CTM2014-54980C2-1-R and CTM2014-54980-C2-2-R, together with the European Regional Development Fund. The author J. Gonzalez-Camejo would also like to thank the Ministry of Education, Culture and Sport (Spain) for its support (pre-doctoral fellowship, FPU14/05082).E-supplementary data can be found in on-line version of the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Control microalgae cultivation es_ES
dc.subject On-line monitoring es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jenvman.2020.111343 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-05082/ES/FPU2014-05082/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Gonzalez-Camejo, J.; Robles Martínez, Á.; Seco, A.; Ferrer, J.; Ruano, MV. (2020). On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation. Journal of Environmental Management. 276:1-8. https://doi.org/10.1016/j.jenvman.2020.111343 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jenvman.2020.111343 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 276 es_ES
dc.identifier.pmid 32942218 es_ES
dc.relation.pasarela S\425069 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Abu‐Ghosh, S., Dubinsky, Z., & Iluz, D. (2020). Acclimation of thermotolerant algae to light and temperature interaction1. Journal of Phycology, 56(3), 662-670. doi:10.1111/jpy.12964 es_ES
dc.description.references Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206 es_ES
dc.description.references Barbera, E., Sforza, E., Grandi, A., & Bertucco, A. (2020). Uncoupling solid and hydraulic retention time in photobioreactors for microalgae mass production: A model-based analysis. Chemical Engineering Science, 218, 115578. doi:10.1016/j.ces.2020.115578 es_ES
dc.description.references De Farias Silva, C. E., de Oliveira Cerqueira, R. B., de Lima Neto, C. F., de Andrade, F. P., de Oliveira Carvalho, F., & Tonholo, J. (2020). Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal. Journal of Environmental Chemical Engineering, 8(3), 103792. doi:10.1016/j.jece.2020.103792 es_ES
dc.description.references De-Luca, R., Trabuio, M., Barolo, M., & Bezzo, F. (2018). Microalgae growth optimization in open ponds with uncertain weather data. Computers & Chemical Engineering, 117, 410-419. doi:10.1016/j.compchemeng.2018.07.005 es_ES
dc.description.references Di Caprio, F. (2020). Methods to quantify biological contaminants in microalgae cultures. Algal Research, 49, 101943. doi:10.1016/j.algal.2020.101943 es_ES
dc.description.references Durán, F., Robles, Á., Giménez, J. B., Ferrer, J., Ribes, J., & Serralta, J. (2020). Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology. Water Research, 184, 116133. doi:10.1016/j.watres.2020.116133 es_ES
dc.description.references Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131-141. doi:10.1016/j.algal.2018.03.015 es_ES
dc.description.references Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021 es_ES
dc.description.references Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026 es_ES
dc.description.references Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178 es_ES
dc.description.references González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238 es_ES
dc.description.references González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518 es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 es_ES
dc.description.references Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012 es_ES
dc.description.references Havlik, I., Lindner, P., Scheper, T., & Reardon, K. F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends in Biotechnology, 31(7), 406-414. doi:10.1016/j.tibtech.2013.04.005 es_ES
dc.description.references Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223, 1078-1085. doi:10.1016/j.jenvman.2018.07.024 es_ES
dc.description.references Lucker, B. F., Hall, C. C., Zegarac, R., & Kramer, D. M. (2014). The environmental photobioreactor (ePBR): An algal culturing platform for simulating dynamic natural environments. Algal Research, 6, 242-249. doi:10.1016/j.algal.2013.12.007 es_ES
dc.description.references Manhaeghe, D., Michels, S., Rousseau, D. P. L., & Van Hulle, S. W. H. (2019). A semi-mechanistic model describing the influence of light and temperature on the respiration and photosynthetic growth of Chlorella vulgaris. Bioresource Technology, 274, 361-370. doi:10.1016/j.biortech.2018.11.097 es_ES
dc.description.references Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 es_ES
dc.description.references Markou, G., Dao, L. H. T., Muylaert, K., & Beardall, J. (2017). Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research, 26, 84-92. doi:10.1016/j.algal.2017.07.005 es_ES
dc.description.references Martínez, C., Mairet, F., Martinon, P., & Bernard, O. (2019). Dynamics and control of a periodically forced microalgae culture. IFAC-PapersOnLine, 52(1), 922-927. doi:10.1016/j.ifacol.2019.06.180 es_ES
dc.description.references Pawlowski, A., Guzmán, J. L., Berenguel, M., & Acién, F. G. (2019). Control System for pH in Raceway Photobioreactors Based on Wiener Models. IFAC-PapersOnLine, 52(1), 928-933. doi:10.1016/j.ifacol.2019.06.181 es_ES
dc.description.references Perin, G., Cimetta, E., Monetti, F., Morosinotto, T., & Bezzo, F. (2016). Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. Algal Research, 19, 69-76. doi:10.1016/j.algal.2016.07.015 es_ES
dc.description.references Robles, Á., Capson-Tojo, G., Galès, A., Ruano, M. V., Sialve, B., Ferrer, J., & Steyer, J.-P. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management, 261, 110244. doi:10.1016/j.jenvman.2020.110244 es_ES
dc.description.references Romero-Villegas, G. I., Fiamengo, M., Acién-Fernández, F. G., & Molina-Grima, E. (2018). Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. Journal of Environmental Management, 228, 506-516. doi:10.1016/j.jenvman.2018.08.020 es_ES
dc.description.references Rossi, S., Casagli, F., Mantovani, M., Mezzanotte, V., & Ficara, E. (2020). Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. Bioresource Technology, 305, 122995. doi:10.1016/j.biortech.2020.122995 es_ES
dc.description.references Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078 es_ES
dc.description.references Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2009). Low cost-sensors as a real alternative to on-line nitrogen analysers in continuous systems. Water Science and Technology, 60(12), 3261-3268. doi:10.2166/wst.2009.607 es_ES
dc.description.references Salama, E.-S., Jeon, B.-H., Chang, S. W., Lee, S., Roh, H.-S., Yang, I.-S., … Kim, S. (2017). Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. Journal of Cleaner Production, 168, 1017-1024. doi:10.1016/j.jclepro.2017.09.057 es_ES
dc.description.references Slegers, P. M., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342-3353. doi:10.1016/j.apenergy.2010.12.037 es_ES
dc.description.references Solovchenko, A., Khozin-Goldberg, I., Selyakh, I., Semenova, L., Ismagulova, T., Lukyanov, A., … Gorelova, O. (2019). Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Research, 43, 101651. doi:10.1016/j.algal.2019.101651 es_ES
dc.description.references Sutherland, D. L., Park, J., Ralph, P. J., & Craggs, R. J. (2020). Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Research, 47, 101850. doi:10.1016/j.algal.2020.101850 es_ES
dc.description.references Tripathi, B. N., & Kumar, D. (Eds.). (2017). Prospects and Challenges in Algal Biotechnology. doi:10.1007/978-981-10-1950-0 es_ES
dc.description.references Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 es_ES
dc.description.references Wágner, D. S., Valverde-Pérez, B., & Plósz, B. G. (2018). Light attenuation in photobioreactors and algal pigmentation under different growth conditions – Model identification and complexity assessment. Algal Research, 35, 488-499. doi:10.1016/j.algal.2018.08.019 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem