Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalez-Camejo, Josue | es_ES |
dc.contributor.author | Robles Martínez, Ángel | es_ES |
dc.contributor.author | Seco, A. | es_ES |
dc.contributor.author | Ferrer, J. | es_ES |
dc.contributor.author | Ruano, M. V. | es_ES |
dc.date.accessioned | 2021-03-01T08:08:54Z | |
dc.date.available | 2021-03-01T08:08:54Z | |
dc.date.issued | 2020-12-15 | es_ES |
dc.identifier.issn | 0301-4797 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162577 | |
dc.description.abstract | [EN] Microalgae performance of outdoor cultivation systems is influenced by environmental and operating dynamics. Monitoring and control systems are needed to maximise biomass productivity and nutrient recovery. The goal of this work was to corroborate that pH data could be used to monitor microalgae performance by means of data from an outdoor membrane photobioreactor (MPBR) plant. In this system, microalgae photosynthetic activity was favoured over other physical and biological processes, so that the pH data dynamics was theoretically related to the microalgae carbon uptake rate (CUR). Shortand long-term continuous operations were tested to corroborate the relationship between the first derivate of pH data dynamics (pH') and microalgae photosynthetic activity. Short-term operations showed a good correlation between gross pH' values and MPBR performance. An indicator of the maximum daily average microalgae activity was assessed by a combination of on-line pH' measurements obtained in the long-term and a microalgae growth kinetic model. Both indicators contributed to the development of advanced real-time monitoring and control systems to optimise microalgae cultivation technology. | es_ES |
dc.description.sponsorship | Authors would like to acknowledge the Ministry of Economy and Competitiveness (Spain) for their support in Projects CTM2014-54980C2-1-R and CTM2014-54980-C2-2-R, together with the European Regional Development Fund. The author J. Gonzalez-Camejo would also like to thank the Ministry of Education, Culture and Sport (Spain) for its support (pre-doctoral fellowship, FPU14/05082).E-supplementary data can be found in on-line version of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Environmental Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Control microalgae cultivation | es_ES |
dc.subject | On-line monitoring | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jenvman.2020.111343 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU2014-05082/ES/FPU2014-05082/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Gonzalez-Camejo, J.; Robles Martínez, Á.; Seco, A.; Ferrer, J.; Ruano, MV. (2020). On-line monitoring of photosynthetic activity based on pH data to assess microalgae cultivation. Journal of Environmental Management. 276:1-8. https://doi.org/10.1016/j.jenvman.2020.111343 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jenvman.2020.111343 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 276 | es_ES |
dc.identifier.pmid | 32942218 | es_ES |
dc.relation.pasarela | S\425069 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Abu‐Ghosh, S., Dubinsky, Z., & Iluz, D. (2020). Acclimation of thermotolerant algae to light and temperature interaction1. Journal of Phycology, 56(3), 662-670. doi:10.1111/jpy.12964 | es_ES |
dc.description.references | Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206 | es_ES |
dc.description.references | Barbera, E., Sforza, E., Grandi, A., & Bertucco, A. (2020). Uncoupling solid and hydraulic retention time in photobioreactors for microalgae mass production: A model-based analysis. Chemical Engineering Science, 218, 115578. doi:10.1016/j.ces.2020.115578 | es_ES |
dc.description.references | De Farias Silva, C. E., de Oliveira Cerqueira, R. B., de Lima Neto, C. F., de Andrade, F. P., de Oliveira Carvalho, F., & Tonholo, J. (2020). Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal. Journal of Environmental Chemical Engineering, 8(3), 103792. doi:10.1016/j.jece.2020.103792 | es_ES |
dc.description.references | De-Luca, R., Trabuio, M., Barolo, M., & Bezzo, F. (2018). Microalgae growth optimization in open ponds with uncertain weather data. Computers & Chemical Engineering, 117, 410-419. doi:10.1016/j.compchemeng.2018.07.005 | es_ES |
dc.description.references | Di Caprio, F. (2020). Methods to quantify biological contaminants in microalgae cultures. Algal Research, 49, 101943. doi:10.1016/j.algal.2020.101943 | es_ES |
dc.description.references | Durán, F., Robles, Á., Giménez, J. B., Ferrer, J., Ribes, J., & Serralta, J. (2020). Modeling the anaerobic treatment of sulfate-rich urban wastewater: Application to AnMBR technology. Water Research, 184, 116133. doi:10.1016/j.watres.2020.116133 | es_ES |
dc.description.references | Eze, V. C., Velasquez-Orta, S. B., Hernández-García, A., Monje-Ramírez, I., & Orta-Ledesma, M. T. (2018). Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Research, 32, 131-141. doi:10.1016/j.algal.2018.03.015 | es_ES |
dc.description.references | Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021 | es_ES |
dc.description.references | Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026 | es_ES |
dc.description.references | Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178 | es_ES |
dc.description.references | González-Camejo, J., Barat, R., Aguado, D., & Ferrer, J. (2020). Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research, 169, 115238. doi:10.1016/j.watres.2019.115238 | es_ES |
dc.description.references | González-Camejo, J., Aparicio, S., Jiménez-Benítez, A., Pachés, M., Ruano, M. V., Borrás, L., … Seco, A. (2020). Improving membrane photobioreactor performance by reducing light path: operating conditions and key performance indicators. Water Research, 172, 115518. doi:10.1016/j.watres.2020.115518 | es_ES |
dc.description.references | González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 | es_ES |
dc.description.references | Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299-315. doi:10.1016/j.jenvman.2017.08.012 | es_ES |
dc.description.references | Havlik, I., Lindner, P., Scheper, T., & Reardon, K. F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends in Biotechnology, 31(7), 406-414. doi:10.1016/j.tibtech.2013.04.005 | es_ES |
dc.description.references | Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., & Pirozzi, F. (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223, 1078-1085. doi:10.1016/j.jenvman.2018.07.024 | es_ES |
dc.description.references | Lucker, B. F., Hall, C. C., Zegarac, R., & Kramer, D. M. (2014). The environmental photobioreactor (ePBR): An algal culturing platform for simulating dynamic natural environments. Algal Research, 6, 242-249. doi:10.1016/j.algal.2013.12.007 | es_ES |
dc.description.references | Manhaeghe, D., Michels, S., Rousseau, D. P. L., & Van Hulle, S. W. H. (2019). A semi-mechanistic model describing the influence of light and temperature on the respiration and photosynthetic growth of Chlorella vulgaris. Bioresource Technology, 274, 361-370. doi:10.1016/j.biortech.2018.11.097 | es_ES |
dc.description.references | Marazzi, F., Bellucci, M., Rossi, S., Fornaroli, R., Ficara, E., & Mezzanotte, V. (2019). Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research, 39, 101430. doi:10.1016/j.algal.2019.101430 | es_ES |
dc.description.references | Markou, G., Dao, L. H. T., Muylaert, K., & Beardall, J. (2017). Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris. Algal Research, 26, 84-92. doi:10.1016/j.algal.2017.07.005 | es_ES |
dc.description.references | Martínez, C., Mairet, F., Martinon, P., & Bernard, O. (2019). Dynamics and control of a periodically forced microalgae culture. IFAC-PapersOnLine, 52(1), 922-927. doi:10.1016/j.ifacol.2019.06.180 | es_ES |
dc.description.references | Pawlowski, A., Guzmán, J. L., Berenguel, M., & Acién, F. G. (2019). Control System for pH in Raceway Photobioreactors Based on Wiener Models. IFAC-PapersOnLine, 52(1), 928-933. doi:10.1016/j.ifacol.2019.06.181 | es_ES |
dc.description.references | Perin, G., Cimetta, E., Monetti, F., Morosinotto, T., & Bezzo, F. (2016). Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. Algal Research, 19, 69-76. doi:10.1016/j.algal.2016.07.015 | es_ES |
dc.description.references | Robles, Á., Capson-Tojo, G., Galès, A., Ruano, M. V., Sialve, B., Ferrer, J., & Steyer, J.-P. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management, 261, 110244. doi:10.1016/j.jenvman.2020.110244 | es_ES |
dc.description.references | Romero-Villegas, G. I., Fiamengo, M., Acién-Fernández, F. G., & Molina-Grima, E. (2018). Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. Journal of Environmental Management, 228, 506-516. doi:10.1016/j.jenvman.2018.08.020 | es_ES |
dc.description.references | Rossi, S., Casagli, F., Mantovani, M., Mezzanotte, V., & Ficara, E. (2020). Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. Bioresource Technology, 305, 122995. doi:10.1016/j.biortech.2020.122995 | es_ES |
dc.description.references | Rossi, S., Bellucci, M., Marazzi, F., Mezzanotte, V., & Ficara, E. (2018). Activity assessment of microalgal-bacterial consortia based on respirometric tests. Water Science and Technology, 78(1), 207-215. doi:10.2166/wst.2018.078 | es_ES |
dc.description.references | Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2009). Low cost-sensors as a real alternative to on-line nitrogen analysers in continuous systems. Water Science and Technology, 60(12), 3261-3268. doi:10.2166/wst.2009.607 | es_ES |
dc.description.references | Salama, E.-S., Jeon, B.-H., Chang, S. W., Lee, S., Roh, H.-S., Yang, I.-S., … Kim, S. (2017). Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. Journal of Cleaner Production, 168, 1017-1024. doi:10.1016/j.jclepro.2017.09.057 | es_ES |
dc.description.references | Slegers, P. M., Wijffels, R. H., van Straten, G., & van Boxtel, A. J. B. (2011). Design scenarios for flat panel photobioreactors. Applied Energy, 88(10), 3342-3353. doi:10.1016/j.apenergy.2010.12.037 | es_ES |
dc.description.references | Solovchenko, A., Khozin-Goldberg, I., Selyakh, I., Semenova, L., Ismagulova, T., Lukyanov, A., … Gorelova, O. (2019). Phosphorus starvation and luxury uptake in green microalgae revisited. Algal Research, 43, 101651. doi:10.1016/j.algal.2019.101651 | es_ES |
dc.description.references | Sutherland, D. L., Park, J., Ralph, P. J., & Craggs, R. J. (2020). Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Research, 47, 101850. doi:10.1016/j.algal.2020.101850 | es_ES |
dc.description.references | Tripathi, B. N., & Kumar, D. (Eds.). (2017). Prospects and Challenges in Algal Biotechnology. doi:10.1007/978-981-10-1950-0 | es_ES |
dc.description.references | Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 | es_ES |
dc.description.references | Wágner, D. S., Valverde-Pérez, B., & Plósz, B. G. (2018). Light attenuation in photobioreactors and algal pigmentation under different growth conditions – Model identification and complexity assessment. Algal Research, 35, 488-499. doi:10.1016/j.algal.2018.08.019 | es_ES |