- -

On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory

Show full item record

Chicharro, FI.; Cordero Barbero, A.; Garrido, N.; Torregrosa Sánchez, JR. (2020). On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory. Applied Mathematics Letters. 104:1-8. https://doi.org/10.1016/j.aml.2020.106277

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162587

Files in this item

Item Metadata

Title: On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory
Author: Chicharro, Francisco I. Cordero Barbero, Alicia Garrido, Neus Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Issued date:
Abstract:
[EN] Iterative methods with memory for solving nonlinear systems have been designed. For approximating the accelerating parameters the Kurchatov's divided difference is used as an approximation of the derivative of second ...[+]
Subjects: Nonlinear systems , Iterative methods , Divided difference operator , Kurchatov divided difference
Copyrigths: Cerrado
Source:
Applied Mathematics Letters. (issn: 0893-9659 )
DOI: 10.1016/j.aml.2020.106277
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.aml.2020.106277
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Thanks:
This research was partially supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), and Generalitat Valenciana PROMETEO/2016/089.
Type: Artículo

References

Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9

Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048

A. Cordero, J.G. Maimó, J.R. Torregrosa, M.P. Vassileva, Iterative methods with memory for solving systems of nonlinear equations using a second order approximation, Mathematics 7 (11). http://dx.doi.org/10.3390/math7111069.

Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z

recommendations

 

recommendations

 

This item appears in the following Collection(s)

Show full item record