- -

Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties

Show full item record

Calatayud Gregori, J.; Cortés, J.; Jornet Sanz, M. (2020). Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties. Stochastic Analysis and Applications. 38(5):875-885. https://doi.org/10.1080/07362994.2020.1733017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162594

Files in this item

Item Metadata

Title: Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties
Author: Calatayud Gregori, Julia Cortés, J.-C. Jornet Sanz, Marc
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this work, we study the full randomized versions of Airy, Hermite and Laguerre differential equations, which depend on a random variable appearing as an equation coefficient as well as two random initial conditions. ...[+]
Subjects: Random differential equation , Second-order linear differential equation , Frobenius method , Mean square calculus , Mean fourth calculus
Copyrigths: Reserva de todos los derechos
Source:
Stochastic Analysis and Applications. (issn: 0736-2994 )
DOI: 10.1080/07362994.2020.1733017
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/07362994.2020.1733017
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Thanks:
This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P.
Type: Artículo

References

Neckel, T., & Rupp, F. (2013). Random Differential Equations in Scientific Computing. doi:10.2478/9788376560267

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046 [+]
Neckel, T., & Rupp, F. (2013). Random Differential Equations in Scientific Computing. doi:10.2478/9788376560267

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046

Calbo, G., Cortés, J.-C., & Jódar, L. (2011). Random Hermite differential equations: Mean square power series solutions and statistical properties. Applied Mathematics and Computation, 218(7), 3654-3666. doi:10.1016/j.amc.2011.09.008

Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6

Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8

Gregori, J., López, J., & Sanz, M. (2018). Some Notes to Extend the Study on Random Non-Autonomous Second Order Linear Differential Equations Appearing in Mathematical Modeling. Mathematical and Computational Applications, 23(4), 76. doi:10.3390/mca23040076

Calbo, G., Cortés, J.-C., & Jódar, L. (2010). Mean square power series solution of random linear differential equations. Computers & Mathematics with Applications, 59(1), 559-572. doi:10.1016/j.camwa.2009.06.007

Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2010). Analytic stochastic process solutions of second-order random differential equations. Applied Mathematics Letters, 23(12), 1421-1424. doi:10.1016/j.aml.2010.07.011

CALBO SANJUÁN, G. (s. f.). Mean Square Analytic Solutions of Random Linear Models. doi:10.4995/thesis/10251/8721

Jagadeesan, M. (2017). Simple analysis of sparse, sign-consistent JL. arXiv:1708.02966.

Lin, G. D. (2017). Recent developments on the moment problem. Journal of Statistical Distributions and Applications, 4(1). doi:10.1186/s40488-017-0059-2

Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045

Calbo, G., Cortés, J.-C., Jódar, L., & Villafuerte, L. (2011). Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Computers & Mathematics with Applications, 61(9), 2782-2792. doi:10.1016/j.camwa.2011.03.045

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record