Mostrar el registro sencillo del ítem
dc.contributor.author | Wang, Qintong | es_ES |
dc.contributor.author | Hernández Crespo, Carmen | es_ES |
dc.contributor.author | Santoni, Marcello | es_ES |
dc.contributor.author | Van Hulle, Stijn | es_ES |
dc.contributor.author | Rousseau, Diederik P. L. | es_ES |
dc.date.accessioned | 2021-03-02T04:31:20Z | |
dc.date.available | 2021-03-02T04:31:20Z | |
dc.date.issued | 2020-06-15 | es_ES |
dc.identifier.issn | 0048-9697 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162636 | |
dc.description.abstract | [EN] The presence and fate of microplastics (MPs) in wastewater represent a subject of major concern, as wastewater is one of the main inputs of MPs to the environment. This study deals with the ability of horizontal subsurface-flow constructed wetlands (CWs), as tertiary treatment, to reduce the MPs concentration of secondary effluents. Different locations of a wastewater treatment plant (WWTP) including raw wastewater, CW influent and final effluent, were sampled. Macroinvertebrates were collected from the CW to evaluate their potential role in the MPs distribution along the wetland. The global WWTP efficiency for MPs removal was 98%. MPs removal efficiency by CW was on average 88%, causing a significant reduction of the MPs concentration from 6.45 to 0.77 MP/L (p < 0.05), thus preventing them from entering vulnerable aquatic systems. The areal removal rate and the first order areal rate coefficient (k(A)) were estimated to be 3120 MPs/m(2)/d and 1.70 m/d, respectively. The most abundant size fraction was the one comprising MPs between 75 and 425 mu m (51%), while the other size ranges analysed (40-75 and 425-5600 mu m) accounted for 25 and 24%, respectively. Fiber was the most abundant shape in the WWTP influent (75%), the CW influent (54%) and effluent (71%). Non-significant differences were found between sites regarding size and shape distributions (p > 0.05). Macroinvertebrates can ingest a non-negligible quantity of MPs, with an average content of 166.2 MPs/g or 0.13 MPs/individual. Therefore, they could play a certain role in the MPs distribution inside CWs. Fiber was the most abundant shape for macroinvertebrates as well (89%), so attention should be paid to reduce their contamination at source. This study provides the first results on MPs removal in CWs as tertiary treatment and assesses the potential role of macroinvertebrates in their distribution along the CW, thus filling this gap of knowledge. | es_ES |
dc.description.sponsorship | Qintong Wang was financially supported by the China Scholarship Council (CSC) by a CSC PhD grant (Ref. 201906690045). Carmen Hernandez-Crespo had a "Jose Castillejo" mobility grant (CAS19/00114) from the Spanish Ministry of Science, Innovation and Universities (State Program for the Promotion of Talent and its Employability in R&D, State Mobility Subprogramme, of the State R&D Plan). The authors also thank Aquafin NV for granting access to their site. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | The Science of The Total Environment | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Microplastics | es_ES |
dc.subject | Macroinvertebrates | es_ES |
dc.subject | Nature-based solution | es_ES |
dc.subject | Wastewater | es_ES |
dc.subject | Treatment wetland | es_ES |
dc.subject | Tertiary treatment | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution? | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.scitotenv.2020.137785 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSC//201906690045/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CAS19%2F00114/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Wang, Q.; Hernández Crespo, C.; Santoni, M.; Van Hulle, S.; Rousseau, DPL. (2020). Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?. The Science of The Total Environment. 721:1-8. https://doi.org/10.1016/j.scitotenv.2020.137785 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.scitotenv.2020.137785 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 721 | es_ES |
dc.relation.pasarela | S\410459 | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Besseling, E., Wegner, A., Foekema, E. M., van den Heuvel-Greve, M. J., & Koelmans, A. A. (2012). Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm Arenicola marina (L.). Environmental Science & Technology, 47(1), 593-600. doi:10.1021/es302763x | es_ES |
dc.description.references | Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002 | es_ES |
dc.description.references | Conley, K., Clum, A., Deepe, J., Lane, H., & Beckingham, B. (2019). Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Research X, 3, 100030. doi:10.1016/j.wroa.2019.100030 | es_ES |
dc.description.references | De Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of The Total Environment, 645, 1029-1039. doi:10.1016/j.scitotenv.2018.07.207 | es_ES |
dc.description.references | Gatidou, G., Arvaniti, O. S., & Stasinakis, A. S. (2019). Review on the occurrence and fate of microplastics in Sewage Treatment Plants. Journal of Hazardous Materials, 367, 504-512. doi:10.1016/j.jhazmat.2018.12.081 | es_ES |
dc.description.references | Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505 | es_ES |
dc.description.references | Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., … Geissen, V. (2016). Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685-2691. doi:10.1021/acs.est.5b05478 | es_ES |
dc.description.references | Hüffer, T., Wagner, S., Reemtsma, T., & Hofmann, T. (2019). Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends in Analytical Chemistry, 113, 392-401. doi:10.1016/j.trac.2018.11.029 | es_ES |
dc.description.references | Keller, A. S., Jimenez-Martinez, J., & Mitrano, D. M. (2019). Transport of Nano- and Microplastic through Unsaturated Porous Media from Sewage Sludge Application. Environmental Science & Technology, 54(2), 911-920. doi:10.1021/acs.est.9b06483 | es_ES |
dc.description.references | Kühn, S., van Werven, B., van Oyen, A., Meijboom, A., Bravo Rebolledo, E. L., & van Franeker, J. A. (2017). The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Marine Pollution Bulletin, 115(1-2), 86-90. doi:10.1016/j.marpolbul.2016.11.034 | es_ES |
dc.description.references | Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049 | es_ES |
dc.description.references | Li, H. Z., Wang, S., Ye, J. F., Xu, Z. X., & Jin, W. (2011). A practical method for the restoration of clogged rural vertical subsurface flow constructed wetlands for domestic wastewater treatment using earthworm. Water Science and Technology, 63(2), 283-290. doi:10.2166/wst.2011.051 | es_ES |
dc.description.references | Luo, H., Li, Y., Zhao, Y., Xiang, Y., He, D., & Pan, X. (2020). Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environmental Pollution, 257, 113475. doi:10.1016/j.envpol.2019.113475 | es_ES |
dc.description.references | Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., … Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045-1054. doi:10.1016/j.envpol.2016.08.056 | es_ES |
dc.description.references | Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365-372. doi:10.1016/j.watres.2016.11.015 | es_ES |
dc.description.references | Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416 | es_ES |
dc.description.references | Ngo, P. L., Pramanik, B. K., Shah, K., & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255, 113326. doi:10.1016/j.envpol.2019.113326 | es_ES |
dc.description.references | Ouattara, J.-M. P., Coulibaly, L., Tiho, S., & Gourène, G. (2009). Comparison of macrofauna communities in sediments of the beds of vertical flow constructed wetlands planted with Panicum maximum (Jacq.) treating domestic wastewater. Ecological Engineering, 35(8), 1237-1242. doi:10.1016/j.ecoleng.2009.05.007 | es_ES |
dc.description.references | Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159. doi:10.1016/j.trac.2018.10.029 | es_ES |
dc.description.references | Raju, S., Carbery, M., Kuttykattil, A., Senathirajah, K., Subashchandrabose, S. R., Evans, G., & Thavamani, P. (2018). Transport and fate of microplastics in wastewater treatment plants: implications to environmental health. Reviews in Environmental Science and Bio/Technology, 17(4), 637-653. doi:10.1007/s11157-018-9480-3 | es_ES |
dc.description.references | Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M., & Koelmans, A. A. (2018). Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates. Environmental Science & Technology, 52(4), 2278-2286. doi:10.1021/acs.est.7b05367 | es_ES |
dc.description.references | Rousseau, D. P. L., Lesage, E., Story, A., Vanrolleghem, P. A., & De Pauw, N. (2008). Constructed wetlands for water reclamation. Desalination, 218(1-3), 181-189. doi:10.1016/j.desal.2006.09.034 | es_ES |
dc.description.references | Stolte, A., Forster, S., Gerdts, G., & Schubert, H. (2015). Microplastic concentrations in beach sediments along the German Baltic coast. Marine Pollution Bulletin, 99(1-2), 216-229. doi:10.1016/j.marpolbul.2015.07.022 | es_ES |
dc.description.references | Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B.-J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. doi:10.1016/j.watres.2018.12.050 | es_ES |
dc.description.references | Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360 | es_ES |
dc.description.references | Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. doi:10.1016/j.watres.2017.07.005 | es_ES |
dc.description.references | Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution, 199, 10-17. doi:10.1016/j.envpol.2015.01.008 | es_ES |
dc.description.references | Windsor, F. M., Tilley, R. M., Tyler, C. R., & Ormerod, S. J. (2019). Microplastic ingestion by riverine macroinvertebrates. Science of The Total Environment, 646, 68-74. doi:10.1016/j.scitotenv.2018.07.271 | es_ES |
dc.description.references | Wolff, S., Kerpen, J., Prediger, J., Barkmann, L., & Müller, L. (2019). Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Research X, 2, 100014. doi:10.1016/j.wroa.2018.100014 | es_ES |
dc.description.references | Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.042 | es_ES |
dc.description.references | Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L., & Leusch, F. D. L. (2020). Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Science of The Total Environment, 713, 136356. doi:10.1016/j.scitotenv.2019.136356 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |