- -

Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Qintong es_ES
dc.contributor.author Hernández Crespo, Carmen es_ES
dc.contributor.author Santoni, Marcello es_ES
dc.contributor.author Van Hulle, Stijn es_ES
dc.contributor.author Rousseau, Diederik P. L. es_ES
dc.date.accessioned 2021-03-02T04:31:20Z
dc.date.available 2021-03-02T04:31:20Z
dc.date.issued 2020-06-15 es_ES
dc.identifier.issn 0048-9697 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162636
dc.description.abstract [EN] The presence and fate of microplastics (MPs) in wastewater represent a subject of major concern, as wastewater is one of the main inputs of MPs to the environment. This study deals with the ability of horizontal subsurface-flow constructed wetlands (CWs), as tertiary treatment, to reduce the MPs concentration of secondary effluents. Different locations of a wastewater treatment plant (WWTP) including raw wastewater, CW influent and final effluent, were sampled. Macroinvertebrates were collected from the CW to evaluate their potential role in the MPs distribution along the wetland. The global WWTP efficiency for MPs removal was 98%. MPs removal efficiency by CW was on average 88%, causing a significant reduction of the MPs concentration from 6.45 to 0.77 MP/L (p < 0.05), thus preventing them from entering vulnerable aquatic systems. The areal removal rate and the first order areal rate coefficient (k(A)) were estimated to be 3120 MPs/m(2)/d and 1.70 m/d, respectively. The most abundant size fraction was the one comprising MPs between 75 and 425 mu m (51%), while the other size ranges analysed (40-75 and 425-5600 mu m) accounted for 25 and 24%, respectively. Fiber was the most abundant shape in the WWTP influent (75%), the CW influent (54%) and effluent (71%). Non-significant differences were found between sites regarding size and shape distributions (p > 0.05). Macroinvertebrates can ingest a non-negligible quantity of MPs, with an average content of 166.2 MPs/g or 0.13 MPs/individual. Therefore, they could play a certain role in the MPs distribution inside CWs. Fiber was the most abundant shape for macroinvertebrates as well (89%), so attention should be paid to reduce their contamination at source. This study provides the first results on MPs removal in CWs as tertiary treatment and assesses the potential role of macroinvertebrates in their distribution along the CW, thus filling this gap of knowledge. es_ES
dc.description.sponsorship Qintong Wang was financially supported by the China Scholarship Council (CSC) by a CSC PhD grant (Ref. 201906690045). Carmen Hernandez-Crespo had a "Jose Castillejo" mobility grant (CAS19/00114) from the Spanish Ministry of Science, Innovation and Universities (State Program for the Promotion of Talent and its Employability in R&D, State Mobility Subprogramme, of the State R&D Plan). The authors also thank Aquafin NV for granting access to their site. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof The Science of The Total Environment es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Microplastics es_ES
dc.subject Macroinvertebrates es_ES
dc.subject Nature-based solution es_ES
dc.subject Wastewater es_ES
dc.subject Treatment wetland es_ES
dc.subject Tertiary treatment es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.scitotenv.2020.137785 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSC//201906690045/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CAS19%2F00114/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Wang, Q.; Hernández Crespo, C.; Santoni, M.; Van Hulle, S.; Rousseau, DPL. (2020). Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?. The Science of The Total Environment. 721:1-8. https://doi.org/10.1016/j.scitotenv.2020.137785 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.scitotenv.2020.137785 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 721 es_ES
dc.relation.pasarela S\410459 es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Besseling, E., Wegner, A., Foekema, E. M., van den Heuvel-Greve, M. J., & Koelmans, A. A. (2012). Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm Arenicola marina (L.). Environmental Science & Technology, 47(1), 593-600. doi:10.1021/es302763x es_ES
dc.description.references Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174-182. doi:10.1016/j.watres.2016.01.002 es_ES
dc.description.references Conley, K., Clum, A., Deepe, J., Lane, H., & Beckingham, B. (2019). Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Research X, 3, 100030. doi:10.1016/j.wroa.2019.100030 es_ES
dc.description.references De Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of The Total Environment, 645, 1029-1039. doi:10.1016/j.scitotenv.2018.07.207 es_ES
dc.description.references Gatidou, G., Arvaniti, O. S., & Stasinakis, A. S. (2019). Review on the occurrence and fate of microplastics in Sewage Treatment Plants. Journal of Hazardous Materials, 367, 504-512. doi:10.1016/j.jhazmat.2018.12.081 es_ES
dc.description.references Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46(6), 3060-3075. doi:10.1021/es2031505 es_ES
dc.description.references Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., … Geissen, V. (2016). Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685-2691. doi:10.1021/acs.est.5b05478 es_ES
dc.description.references Hüffer, T., Wagner, S., Reemtsma, T., & Hofmann, T. (2019). Sorption of organic substances to tire wear materials: Similarities and differences with other types of microplastic. TrAC Trends in Analytical Chemistry, 113, 392-401. doi:10.1016/j.trac.2018.11.029 es_ES
dc.description.references Keller, A. S., Jimenez-Martinez, J., & Mitrano, D. M. (2019). Transport of Nano- and Microplastic through Unsaturated Porous Media from Sewage Sludge Application. Environmental Science & Technology, 54(2), 911-920. doi:10.1021/acs.est.9b06483 es_ES
dc.description.references Kühn, S., van Werven, B., van Oyen, A., Meijboom, A., Bravo Rebolledo, E. L., & van Franeker, J. A. (2017). The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Marine Pollution Bulletin, 115(1-2), 86-90. doi:10.1016/j.marpolbul.2016.11.034 es_ES
dc.description.references Lares, M., Ncibi, M. C., Sillanpää, M., & Sillanpää, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246. doi:10.1016/j.watres.2018.01.049 es_ES
dc.description.references Li, H. Z., Wang, S., Ye, J. F., Xu, Z. X., & Jin, W. (2011). A practical method for the restoration of clogged rural vertical subsurface flow constructed wetlands for domestic wastewater treatment using earthworm. Water Science and Technology, 63(2), 283-290. doi:10.2166/wst.2011.051 es_ES
dc.description.references Luo, H., Li, Y., Zhao, Y., Xiang, Y., He, D., & Pan, X. (2020). Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environmental Pollution, 257, 113475. doi:10.1016/j.envpol.2019.113475 es_ES
dc.description.references Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., … Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045-1054. doi:10.1016/j.envpol.2016.08.056 es_ES
dc.description.references Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365-372. doi:10.1016/j.watres.2016.11.015 es_ES
dc.description.references Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416 es_ES
dc.description.references Ngo, P. L., Pramanik, B. K., Shah, K., & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255, 113326. doi:10.1016/j.envpol.2019.113326 es_ES
dc.description.references Ouattara, J.-M. P., Coulibaly, L., Tiho, S., & Gourène, G. (2009). Comparison of macrofauna communities in sediments of the beds of vertical flow constructed wetlands planted with Panicum maximum (Jacq.) treating domestic wastewater. Ecological Engineering, 35(8), 1237-1242. doi:10.1016/j.ecoleng.2009.05.007 es_ES
dc.description.references Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150-159. doi:10.1016/j.trac.2018.10.029 es_ES
dc.description.references Raju, S., Carbery, M., Kuttykattil, A., Senathirajah, K., Subashchandrabose, S. R., Evans, G., & Thavamani, P. (2018). Transport and fate of microplastics in wastewater treatment plants: implications to environmental health. Reviews in Environmental Science and Bio/Technology, 17(4), 637-653. doi:10.1007/s11157-018-9480-3 es_ES
dc.description.references Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M., & Koelmans, A. A. (2018). Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates. Environmental Science & Technology, 52(4), 2278-2286. doi:10.1021/acs.est.7b05367 es_ES
dc.description.references Rousseau, D. P. L., Lesage, E., Story, A., Vanrolleghem, P. A., & De Pauw, N. (2008). Constructed wetlands for water reclamation. Desalination, 218(1-3), 181-189. doi:10.1016/j.desal.2006.09.034 es_ES
dc.description.references Stolte, A., Forster, S., Gerdts, G., & Schubert, H. (2015). Microplastic concentrations in beach sediments along the German Baltic coast. Marine Pollution Bulletin, 99(1-2), 216-229. doi:10.1016/j.marpolbul.2015.07.022 es_ES
dc.description.references Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B.-J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. doi:10.1016/j.watres.2018.12.050 es_ES
dc.description.references Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72(9), 1495-1504. doi:10.2166/wst.2015.360 es_ES
dc.description.references Talvitie, J., Mikola, A., Koistinen, A., & Setälä, O. (2017). Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research, 123, 401-407. doi:10.1016/j.watres.2017.07.005 es_ES
dc.description.references Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B., & Janssen, C. R. (2015). Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution, 199, 10-17. doi:10.1016/j.envpol.2015.01.008 es_ES
dc.description.references Windsor, F. M., Tilley, R. M., Tyler, C. R., & Ormerod, S. J. (2019). Microplastic ingestion by riverine macroinvertebrates. Science of The Total Environment, 646, 68-74. doi:10.1016/j.scitotenv.2018.07.271 es_ES
dc.description.references Wolff, S., Kerpen, J., Prediger, J., Barkmann, L., & Müller, L. (2019). Determination of the microplastics emission in the effluent of a municipal waste water treatment plant using Raman microspectroscopy. Water Research X, 2, 100014. doi:10.1016/j.wroa.2018.100014 es_ES
dc.description.references Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93-99. doi:10.1016/j.watres.2017.01.042 es_ES
dc.description.references Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L., & Leusch, F. D. L. (2020). Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Science of The Total Environment, 713, 136356. doi:10.1016/j.scitotenv.2019.136356 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem