- -

Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity

Mostrar el registro completo del ítem

Rosa-Ramírez, HDL.; Aldás-Carrasco, MF.; Ferri, J.; López-Martínez, J.; Samper, M. (2020). Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science. 137(44):1-15. https://doi.org/10.1002/app.49346

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162862

Ficheros en el ítem

Metadatos del ítem

Título: Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity
Autor: Rosa-Ramírez, Harrison de la Aldás-Carrasco, Miguel Fernando Ferri, J.M. López-Martínez, Juan Samper, María-Dolores
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Fecha difusión:
Resumen:
[EN] The modification of PLA by melt compound with gum rosin (GR) and pentaerythritol ester of GR (PEGR) was investigated by studying the mechanical and thermal performance, blends morphology, wettability, and water ...[+]
Palabras clave: Colophony , Gum rosin , Pentaerythritol ester of gum rosin , Poly (lactic acid)
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Polymer Science. (issn: 0021-8995 )
DOI: 10.1002/app.49346
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/app.49346
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F122/
Descripción: "This is the peer reviewed version of the following article: De La Rosa-Ramírez, Harrison, Miguel Aldas, José Miguel Ferri, Juan López-Martínez, and María Dolores Samper. 2020. "Modification of Poly (Lactic Acid) through the Incorporation of Gum Rosin and Gum Rosin Derivative: Mechanical Performance and Hydrophobicity." Journal of Applied Polymer Science 137 (44). Wiley: 49346. doi:10.1002/app.49346, which has been published in final form at https://doi.org/10.1002/app.49346. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
This research was supported by the Ministry of Economy and Competitiveness-PROMADEPCOL Ref: (MAT2017-84909-C2-2-R). Authors also want to acknowledge the postdoc contract offered to José Miguel Ferri by the Generalitat ...[+]
Tipo: Artículo

References

European Bioplastics. Market data about global production capacity of bioplastics on 2019. [Online] https://www.european-bioplastics.org/market/(accessed February 2020).

Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726

Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. doi:10.1016/j.nbt.2016.05.001 [+]
European Bioplastics. Market data about global production capacity of bioplastics on 2019. [Online] https://www.european-bioplastics.org/market/(accessed February 2020).

Muthuraj, R., Misra, M., & Mohanty, A. K. (2017). Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135(24), 45726. doi:10.1002/app.45726

Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38. doi:10.1016/j.nbt.2016.05.001

Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026

Gumede, T. P., Luyt, A. S., & Muller, A. J. (2018). Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. Express Polymer Letters, 12(6), 505-529. doi:10.3144/expresspolymlett.2018.43

Garcia-Garcia, D., Lopez-Martinez, J., Balart, R., Strömberg, E., & Moriana, R. (2018). Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 104, 10-18. doi:10.1016/j.eurpolymj.2018.04.036

Garcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042

Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6

Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812

Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.x

Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004

Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016

Liu, M., Zeng, G., Wang, K., Wan, Q., Tao, L., Zhang, X., & Wei, Y. (2016). Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 8(38), 16819-16840. doi:10.1039/c5nr09078d

Urquijo, J., Guerrica-Echevarría, G., & Eguiazábal, J. I. (2015). Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science, 132(41), n/a-n/a. doi:10.1002/app.42641

Tripathi, N., & Katiyar, V. (2016). PLA/functionalized-gum arabic based bionanocomposite films for high gas barrier applications. Journal of Applied Polymer Science, 133(21), n/a-n/a. doi:10.1002/app.43458

Huang, Q., Liu, M., Mao, L., Xu, D., Zeng, G., Huang, H., … Wei, Y. (2017). Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: Characterization and enhanced removal of organic dye. Journal of Colloid and Interface Science, 499, 170-179. doi:10.1016/j.jcis.2017.03.102

Huang, Q., Liu, M., Chen, J., Wan, Q., Tian, J., Huang, L., … Wei, Y. (2017). Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Applied Surface Science, 419, 35-44. doi:10.1016/j.apsusc.2017.05.006

Huang, H., Liu, M., Xu, D., Mao, L., Huang, Q., Deng, F., … Wei, Y. (2020). Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. Materials Science and Engineering: C, 106, 110157. doi:10.1016/j.msec.2019.110157

Pawlak, F., Aldas, M., López-Martínez, J., & Samper, M. D. (2019). Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 11(9), 1514. doi:10.3390/polym11091514

Yang, S., Wu, Z.-H., Yang, W., & Yang, M.-B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957-963. doi:10.1016/j.polymertesting.2008.08.009

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Bhasney, S. M., Patwa, R., Kumar, A., & Katiyar, V. (2017). Plasticizing effect of coconut oil on morphological, mechanical, thermal, rheological, barrier, and optical properties of poly(lactic acid): A promising candidate for food packaging. Journal of Applied Polymer Science, 134(41), 45390. doi:10.1002/app.45390

Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557

Niu X.;Liu Y.;Song Y.;Han J.;Pan H.2018 183 102.

Pavon, C., Aldas, M., López-Martínez, J., & Ferrándiz, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 12(2), 334. doi:10.3390/polym12020334

Mitchell, G. R., Biscaia, S., Mahendra, V. S., & Mateus, A. (2016). High Value Materials from the Forests. Advances in Materials Physics and Chemistry, 06(03), 54-60. doi:10.4236/ampc.2016.63006

Wiyono, B., Tachibana, S., & Tinambunan, D. (2006). Chemical Compositions of Pine Resin, Rosin and Turpentine Oil from West Java. Indonesian Journal of Forestry Research, 3(1), 7-17. doi:10.20886/ijfr.2006.3.1.7-17

Karlberg, A.-T. (2012). Colophony: Rosin in Unmodified and Modified Form. Kanerva’s Occupational Dermatology, 467-479. doi:10.1007/978-3-642-02035-3_41

Liu, B., Nie, J., & He, Y. (2016). From rosin to high adhesive polyurethane acrylate: Synthesis and properties. International Journal of Adhesion and Adhesives, 66, 99-103. doi:10.1016/j.ijadhadh.2016.01.002

Kumooka, Y. (2008). Analysis of rosin and modified rosin esters in adhesives by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Forensic Science International, 176(2-3), 111-120. doi:10.1016/j.forsciint.2007.07.009

Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236

Safety data Sheet. SIGMA‐ALDRICH; 2018.

International Standards Organization. ISO 527‐2:2012. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics; 2012.

International Standards Organization. ISO 1133‐1:2012. Plastics—Determination of the melt mass‐flow rate (MFR) and melt volume‐flow rate (MVR) of thermoplastics—Part 1: Standard method; 2012.

International Standards Organization. Plastics—Determination of water absorption; 2008.

Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208

International Standards Organization. ISO 178:2019. Plastics—Determination of flexural properties; 2019.

International Standards Organization. ISO 179‐1:2010. Plastics—Determination of Charpy impact properties—Part 1: Non‐instrumented impact test; 2010.

International Standards Organization. ISO 868:2003. Plastics and ebonite—Determination of indentation hardness by means of a durometer (Shore hardness); 2003.

International Standards Organization. ISO 306:2013. Plastics—Thermoplastic materials—Determination of Vicat softening temperature (VST); 2013.

International Standards Organization. ISO 75:2013. Plastics—Determination of temperature of deflection under load—Part 2: Plastics and ebonite; 2013.

Turan, D., Sirin, H., & Ozkoc, G. (2011). Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and Plasticised PLA. Journal of Applied Polymer Science, 121(2), 1067-1075. doi:10.1002/app.33802

Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024

Sigma‐Aldrich. Gum Rosin Safety data sheet; 2019; pp 1–8.

Siddiki, S. M. A. H., Toyao, T., Kon, K., Touchy, A. S., & Shimizu, K. (2016). Catalytic hydrolysis of hydrophobic esters on/in water by high-silica large pore zeolites. Journal of Catalysis, 344, 741-748. doi:10.1016/j.jcat.2016.08.021

Liang, Y.-T., Yang, G.-P., Liu, B., Yan, Y.-T., Xi, Z.-P., & Wang, Y.-Y. (2015). Four super water-stable lanthanide–organic frameworks with active uncoordinated carboxylic and pyridyl groups for selective luminescence sensing of Fe3+. Dalton Transactions, 44(29), 13325-13330. doi:10.1039/c5dt01421b

Cabaret, T., Boulicaud, B., Chatet, E., & Charrier, B. (2018). Study of rosin softening point through thermal treatment for a better understanding of maritime pine exudation. European Journal of Wood and Wood Products, 76(5), 1453-1459. doi:10.1007/s00107-018-1339-3

Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751

Najafi, N., Heuzey, M. C., Carreau, P. J., & Wood-Adams, P. M. (2012). Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polymer Degradation and Stability, 97(4), 554-565. doi:10.1016/j.polymdegradstab.2012.01.016

Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2

Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644

Odian, G. (2004). Principles of Polymerization. doi:10.1002/047147875x

Sauer, J. A. (1977). Deformation, yield and fracture of polymers at high pressure. Polymer Engineering and Science, 17(3), 150-164. doi:10.1002/pen.760170304

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem