Mostrar el registro sencillo del ítem
dc.contributor.author | Roldán, M. | es_ES |
dc.contributor.author | Bouzas, A. | es_ES |
dc.contributor.author | Seco, A. | es_ES |
dc.contributor.author | Mena, E. | es_ES |
dc.contributor.author | Mayor, Á. | es_ES |
dc.contributor.author | Barat, Ramón | es_ES |
dc.date.accessioned | 2021-03-03T04:32:17Z | |
dc.date.available | 2021-03-03T04:32:17Z | |
dc.date.issued | 2020-05-15 | es_ES |
dc.identifier.issn | 0043-1354 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162871 | |
dc.description | ©IWA Publishing 2020. The definitive peer-reviewed and edited version of this article is published in Water Research, Volume 175, 15 May 2020, 115647, https://doi.org/10.1016/j.watres.2020.115647 and is available at www.iwapublishing.com. | es_ES |
dc.description.abstract | [EN] As phosphorus is a non-renewable resource mainly used to produce fertilizers and helps to provide food all over the world, the proper management of its reserves is a global concern since it is expected to become scarcer in the near future. In this work we assessed two different sludge line configurations aiming for P extraction and recovery before anaerobic digestion and compared them with the classical configuration. This study has been performed by simulation with the model BNRM2 integrated in the software package DESASS 7.1. Configuration 1 was based on the production of a PO4-enriched stream from sludge via elutriation in the primary thickeners, while Configuration 2 was based on the WASSTRIP (R) process and its PO4-enriched stream was mechanically obtained with dynamic thickeners. In both alternatives recovery was enhanced by promoting poly-phosphate (poly-P) extraction under anaerobic conditions, for which both configurations were fully evaluated in a full-scale WWTP. Both were also optimized to maximize phosphorus extraction. Their costs and life cycles were also analysed. The novelty of this research lies in the lack of literature about the integral evaluation of pre-anaerobic digestion P recovery from wastewaters. This study included a holistic approach and an optimization study of both alternatives plus their economic and environmental aspects. In Configuration 1, the PO4-P load in the recovery stream reached 43.1% of the total influent P load and reduced uncontrolled P-precipitation in the sludge line up to 52.9%. In Configuration 2, extraction was 48.2% of the influent P load and it reduced precipitation by up to 60.0%. Despite Configuration 1's lower phosphorus recovery efficiency, it had a 23.0% lower life cycle cost and a 14.2% lower global warming impact per hm(3) of treated influent than Configuration 2. Configuration 1 also reduced the TAEC by 17.6% and global warming impact by 2.0% less than Configuration 0. | es_ES |
dc.description.sponsorship | The LIFE Programme, the European Union's funding instrument for the environment and climate action, supported and co-funded this study as part of the LIFE ENRICH project (LIFE16 ENV/ES/000375). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Water Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Phosphorus recovery | es_ES |
dc.subject | Extraction | es_ES |
dc.subject | Elutriation | es_ES |
dc.subject | Sludge management | es_ES |
dc.subject | Mathematical modelling | es_ES |
dc.subject | Waste water | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.watres.2020.115647 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//LIFE16 ENV%2FES%2F000375/EU/Enhanced Nitrogen and phosphorus Recovery from wastewater and Integration in the value Chain/LIFE ENRICH/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Roldán, M.; Bouzas, A.; Seco, A.; Mena, E.; Mayor, Á.; Barat, R. (2020). An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses. Water Research. 175:1-11. https://doi.org/10.1016/j.watres.2020.115647 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.watres.2020.115647 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 175 | es_ES |
dc.identifier.pmid | 32146206 | es_ES |
dc.relation.pasarela | S\403375 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., & Pastor, L. (2019). Implementation of a global P-recovery system in urban wastewater treatment plants. Journal of Cleaner Production, 227, 130-140. doi:10.1016/j.jclepro.2019.04.126 | es_ES |
dc.description.references | Bradford-Hartke, Z., Lane, J., Lant, P., & Leslie, G. (2015). Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater. Environmental Science & Technology, 49(14), 8611-8622. doi:10.1021/es505102v | es_ES |
dc.description.references | Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of «no solid waste generation» and analytical methods. Journal of Cleaner Production, 142, 1728-1740. doi:10.1016/j.jclepro.2016.11.116 | es_ES |
dc.description.references | Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076. doi:10.2166/wst.2009.045 | es_ES |
dc.description.references | Cullen, N., Baur, R., & Schauer, P. (2013). Three years of operation of North America’s first nutrient recovery facility. Water Science and Technology, 68(4), 763-768. doi:10.2166/wst.2013.260 | es_ES |
dc.description.references | Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of The Total Environment, 571, 522-542. doi:10.1016/j.scitotenv.2016.07.019 | es_ES |
dc.description.references | Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018 | es_ES |
dc.description.references | Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005 | es_ES |
dc.description.references | Guedes, P., Couto, N., Ottosen, L. M., & Ribeiro, A. B. (2014). Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management, 34(5), 886-892. doi:10.1016/j.wasman.2014.02.021 | es_ES |
dc.description.references | Guérin-Schneider, L., Tsanga-Tabi, M., Roux, P., Catel, L., & Biard, Y. (2018). How to better include environmental assessment in public decision-making: Lessons from the use of an LCA-calculator for wastewater systems. Journal of Cleaner Production, 187, 1057-1068. doi:10.1016/j.jclepro.2018.03.168 | es_ES |
dc.description.references | Harrison, E. Z., Oakes, S. R., Hysell, M., & Hay, A. (2006). Organic chemicals in sewage sludges. Science of The Total Environment, 367(2-3), 481-497. doi:10.1016/j.scitotenv.2006.04.002 | es_ES |
dc.description.references | Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573 | es_ES |
dc.description.references | Lizarralde, I., Fernández-Arévalo, T., Manas, A., Ayesa, E., & Grau, P. (2019). Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid. Water Research, 153, 39-52. doi:10.1016/j.watres.2018.12.056 | es_ES |
dc.description.references | Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67-74. doi:10.1016/j.cej.2007.10.023 | es_ES |
dc.description.references | Nättorp, A., Remmen, K., & Remy, C. (2017). Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Water Science and Technology, 76(2), 413-424. doi:10.2166/wst.2017.212 | es_ES |
dc.description.references | Neethling, J. B., & Benisch, M. (2004). Struvite control through process and facility design as well as operation strategy. Water Science and Technology, 49(2), 191-199. doi:10.2166/wst.2004.0122 | es_ES |
dc.description.references | Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresource Technology, 99(11), 4817-4824. doi:10.1016/j.biortech.2007.09.054 | es_ES |
dc.description.references | Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781. doi:10.1016/j.chemosphere.2018.01.098 | es_ES |
dc.description.references | Robles, Á., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Giménez, J. B., … Seco, A. (2020). New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, 122673. doi:10.1016/j.biortech.2019.122673 | es_ES |
dc.description.references | Rodriguez-Garcia, G., Frison, N., Vázquez-Padín, J. R., Hospido, A., Garrido, J. M., Fatone, F., … Feijoo, G. (2014). Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Science of The Total Environment, 490, 871-879. doi:10.1016/j.scitotenv.2014.05.077 | es_ES |
dc.description.references | Sena, M., & Hicks, A. (2018). Life cycle assessment review of struvite precipitation in wastewater treatment. Resources, Conservation and Recycling, 139, 194-204. doi:10.1016/j.resconrec.2018.08.009 | es_ES |
dc.description.references | Shih, Y.-J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y.-H., & Lu, M.-C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi:10.1016/j.chemosphere.2017.01.088 | es_ES |
dc.description.references | Van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. Science of The Total Environment, 542, 1078-1093. doi:10.1016/j.scitotenv.2015.08.048 | es_ES |
dc.description.references | Wang, J., You, S., Zong, Y., Træholt, C., Dong, Z. Y., & Zhou, Y. (2019). Flexibility of combined heat and power plants: A review of technologies and operation strategies. Applied Energy, 252, 113445. doi:10.1016/j.apenergy.2019.113445 | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |