- -

An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses

Show simple item record

Files in this item

dc.contributor.author Roldán, M. es_ES
dc.contributor.author Bouzas, A. es_ES
dc.contributor.author Seco, A. es_ES
dc.contributor.author Mena, E. es_ES
dc.contributor.author Mayor, Á. es_ES
dc.contributor.author Barat, Ramón es_ES
dc.date.accessioned 2021-03-03T04:32:17Z
dc.date.available 2021-03-03T04:32:17Z
dc.date.issued 2020-05-15 es_ES
dc.identifier.issn 0043-1354 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162871
dc.description ©IWA Publishing 2020. The definitive peer-reviewed and edited version of this article is published in Water Research, Volume 175, 15 May 2020, 115647, https://doi.org/10.1016/j.watres.2020.115647 and is available at www.iwapublishing.com. es_ES
dc.description.abstract [EN] As phosphorus is a non-renewable resource mainly used to produce fertilizers and helps to provide food all over the world, the proper management of its reserves is a global concern since it is expected to become scarcer in the near future. In this work we assessed two different sludge line configurations aiming for P extraction and recovery before anaerobic digestion and compared them with the classical configuration. This study has been performed by simulation with the model BNRM2 integrated in the software package DESASS 7.1. Configuration 1 was based on the production of a PO4-enriched stream from sludge via elutriation in the primary thickeners, while Configuration 2 was based on the WASSTRIP (R) process and its PO4-enriched stream was mechanically obtained with dynamic thickeners. In both alternatives recovery was enhanced by promoting poly-phosphate (poly-P) extraction under anaerobic conditions, for which both configurations were fully evaluated in a full-scale WWTP. Both were also optimized to maximize phosphorus extraction. Their costs and life cycles were also analysed. The novelty of this research lies in the lack of literature about the integral evaluation of pre-anaerobic digestion P recovery from wastewaters. This study included a holistic approach and an optimization study of both alternatives plus their economic and environmental aspects. In Configuration 1, the PO4-P load in the recovery stream reached 43.1% of the total influent P load and reduced uncontrolled P-precipitation in the sludge line up to 52.9%. In Configuration 2, extraction was 48.2% of the influent P load and it reduced precipitation by up to 60.0%. Despite Configuration 1's lower phosphorus recovery efficiency, it had a 23.0% lower life cycle cost and a 14.2% lower global warming impact per hm(3) of treated influent than Configuration 2. Configuration 1 also reduced the TAEC by 17.6% and global warming impact by 2.0% less than Configuration 0. es_ES
dc.description.sponsorship The LIFE Programme, the European Union's funding instrument for the environment and climate action, supported and co-funded this study as part of the LIFE ENRICH project (LIFE16 ENV/ES/000375). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Water Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Phosphorus recovery es_ES
dc.subject Extraction es_ES
dc.subject Elutriation es_ES
dc.subject Sludge management es_ES
dc.subject Mathematical modelling es_ES
dc.subject Waste water es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.watres.2020.115647 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//LIFE16 ENV%2FES%2F000375/EU/Enhanced Nitrogen and phosphorus Recovery from wastewater and Integration in the value Chain/LIFE ENRICH/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Roldán, M.; Bouzas, A.; Seco, A.; Mena, E.; Mayor, Á.; Barat, R. (2020). An integral approach to sludge handling in a WWTP operated for EBPR aiming phosphorus recovery: simulation of alternatives, LCA and LCC analyses. Water Research. 175:1-11. https://doi.org/10.1016/j.watres.2020.115647 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.watres.2020.115647 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.identifier.pmid 32146206 es_ES
dc.relation.pasarela S\403375 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Bouzas, A., Martí, N., Grau, S., Barat, R., Mangin, D., & Pastor, L. (2019). Implementation of a global P-recovery system in urban wastewater treatment plants. Journal of Cleaner Production, 227, 130-140. doi:10.1016/j.jclepro.2019.04.126 es_ES
dc.description.references Bradford-Hartke, Z., Lane, J., Lant, P., & Leslie, G. (2015). Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater. Environmental Science & Technology, 49(14), 8611-8622. doi:10.1021/es505102v es_ES
dc.description.references Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of «no solid waste generation» and analytical methods. Journal of Cleaner Production, 142, 1728-1740. doi:10.1016/j.jclepro.2016.11.116 es_ES
dc.description.references Cornel, P., & Schaum, C. (2009). Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology, 59(6), 1069-1076. doi:10.2166/wst.2009.045 es_ES
dc.description.references Cullen, N., Baur, R., & Schauer, P. (2013). Three years of operation of North America’s first nutrient recovery facility. Water Science and Technology, 68(4), 763-768. doi:10.2166/wst.2013.260 es_ES
dc.description.references Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of The Total Environment, 571, 522-542. doi:10.1016/j.scitotenv.2016.07.019 es_ES
dc.description.references Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018 es_ES
dc.description.references Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005 es_ES
dc.description.references Guedes, P., Couto, N., Ottosen, L. M., & Ribeiro, A. B. (2014). Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management, 34(5), 886-892. doi:10.1016/j.wasman.2014.02.021 es_ES
dc.description.references Guérin-Schneider, L., Tsanga-Tabi, M., Roux, P., Catel, L., & Biard, Y. (2018). How to better include environmental assessment in public decision-making: Lessons from the use of an LCA-calculator for wastewater systems. Journal of Cleaner Production, 187, 1057-1068. doi:10.1016/j.jclepro.2018.03.168 es_ES
dc.description.references Harrison, E. Z., Oakes, S. R., Hysell, M., & Hay, A. (2006). Organic chemicals in sewage sludges. Science of The Total Environment, 367(2-3), 481-497. doi:10.1016/j.scitotenv.2006.04.002 es_ES
dc.description.references Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. doi:10.1080/10643380701640573 es_ES
dc.description.references Lizarralde, I., Fernández-Arévalo, T., Manas, A., Ayesa, E., & Grau, P. (2019). Model-based opti mization of phosphorus management strategies in Sur WWTP, Madrid. Water Research, 153, 39-52. doi:10.1016/j.watres.2018.12.056 es_ES
dc.description.references Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Struvite precipitation assessment in anaerobic digestion processes. Chemical Engineering Journal, 141(1-3), 67-74. doi:10.1016/j.cej.2007.10.023 es_ES
dc.description.references Nättorp, A., Remmen, K., & Remy, C. (2017). Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Water Science and Technology, 76(2), 413-424. doi:10.2166/wst.2017.212 es_ES
dc.description.references Neethling, J. B., & Benisch, M. (2004). Struvite control through process and facility design as well as operation strategy. Water Science and Technology, 49(2), 191-199. doi:10.2166/wst.2004.0122 es_ES
dc.description.references Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresource Technology, 99(11), 4817-4824. doi:10.1016/j.biortech.2007.09.054 es_ES
dc.description.references Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781. doi:10.1016/j.chemosphere.2018.01.098 es_ES
dc.description.references Robles, Á., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Giménez, J. B., … Seco, A. (2020). New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, 122673. doi:10.1016/j.biortech.2019.122673 es_ES
dc.description.references Rodriguez-Garcia, G., Frison, N., Vázquez-Padín, J. R., Hospido, A., Garrido, J. M., Fatone, F., … Feijoo, G. (2014). Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Science of The Total Environment, 490, 871-879. doi:10.1016/j.scitotenv.2014.05.077 es_ES
dc.description.references Sena, M., & Hicks, A. (2018). Life cycle assessment review of struvite precipitation in wastewater treatment. Resources, Conservation and Recycling, 139, 194-204. doi:10.1016/j.resconrec.2018.08.009 es_ES
dc.description.references Shih, Y.-J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y.-H., & Lu, M.-C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi:10.1016/j.chemosphere.2017.01.088 es_ES
dc.description.references Van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. Science of The Total Environment, 542, 1078-1093. doi:10.1016/j.scitotenv.2015.08.048 es_ES
dc.description.references Wang, J., You, S., Zong, Y., Træholt, C., Dong, Z. Y., & Zhou, Y. (2019). Flexibility of combined heat and power plants: A review of technologies and operation strategies. Applied Energy, 252, 113445. doi:10.1016/j.apenergy.2019.113445 es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


This item appears in the following Collection(s)

Show simple item record