Mostrar el registro sencillo del ítem
dc.contributor.author | Rubio-Martin, Adria | es_ES |
dc.contributor.author | Pulido-Velazquez, M. | es_ES |
dc.contributor.author | Macian-Sorribes, Hector | es_ES |
dc.contributor.author | Garcia-Prats, Alberto | es_ES |
dc.date.accessioned | 2021-03-04T04:31:11Z | |
dc.date.available | 2021-03-04T04:31:11Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162962 | |
dc.description.abstract | [EN] The management of water in systems where the balance between resources and demands is already precarious can pose a challenge and it can be easily disrupted by drought episodes. Anticipated drought management has proved to be one of the main strategies to reduce their impact. Drought economic, environmental, and social impacts affect different sectors that are often interconnected. There is a need for water management models able to acknowledge the complex interactions between multiple sectors, activities, and variables to study the response of water resource systems to drought management strategies. System dynamics (SD) is a modeling methodology that facilitates the analysis of interactions and feedbacks within and between sectors. Although SD has been applied for water resource management, there is a lack of SD models able to regulate complex water resource systems on a monthly time scale and considering multiple reservoir operating rules, demands, and policies. In this paper, we present an SD model for the strategic planning of drought management in the Jucar River system, incorporating dynamic reservoir operating rules, policies, and drought management strategies triggered by a system state index. The DSS combines features from early warning and information systems, allowing for the simulation of drought strategies, evaluating their economic impact, and exploring new management options in the same environment. The results for the historical period show that drought early management can be beneficial for the performance of the system, monitoring the current state of the system, and activating drought management measures results in a substantial reduction of the economic impact of droughts. | es_ES |
dc.description.sponsorship | The data used in this study was obtained from the references included. We acknowledge the European Research Area for Climate Services consortium (ER4CS) and the Agencia Estatal de Investigacion for their financial support to this research under the INNOVA project (Grant Agreement: 690462; PCIN-2017-066). This study has also been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion y Universidades (MICIU) of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Water management | es_ES |
dc.subject | Resources | es_ES |
dc.subject | System dynamics | es_ES |
dc.subject | Drought management | es_ES |
dc.subject | Drought impacts | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | System Dynamics Modeling for Supporting Drought-Oriented Management of the Jucar River System, Spain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w12051407 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/690462/EU/European Research Area for Climate Services/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PCIN-2017-066/ES/INNOVACION EN LA PROVISION DE SERVICIOS CLIMATICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Rubio-Martin, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.; Garcia-Prats, A. (2020). System Dynamics Modeling for Supporting Drought-Oriented Management of the Jucar River System, Spain. Water. 12(5):1-19. https://doi.org/10.3390/w12051407 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w12051407 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\412589 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2), 202-216. doi:10.1016/j.jhydrol.2010.07.012 | es_ES |
dc.description.references | Momblanch, A., Paredes-Arquiola, J., Munné, A., Manzano, A., Arnau, J., & Andreu, J. (2015). Managing water quality under drought conditions in the Llobregat River Basin. Science of The Total Environment, 503-504, 300-318. doi:10.1016/j.scitotenv.2014.06.069 | es_ES |
dc.description.references | Van Loon, A. F., & Van Lanen, H. A. J. (2013). Making the distinction between water scarcity and drought using an observation-modeling framework. Water Resources Research, 49(3), 1483-1502. doi:10.1002/wrcr.20147 | es_ES |
dc.description.references | Mishra, A. K., & Singh, V. P. (2011). Drought modeling – A review. Journal of Hydrology, 403(1-2), 157-175. doi:10.1016/j.jhydrol.2011.03.049 | es_ES |
dc.description.references | Wilhite, D. A., Sivakumar, M. V. K., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4-13. doi:10.1016/j.wace.2014.01.002 | es_ES |
dc.description.references | Marcos-Garcia, P., Lopez-Nicolas, A., & Pulido-Velazquez, M. (2017). Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. Journal of Hydrology, 554, 292-305. doi:10.1016/j.jhydrol.2017.09.028 | es_ES |
dc.description.references | Estrela, T., & Vargas, E. (2012). Drought Management Plans in the European Union. The Case of Spain. Water Resources Management, 26(6), 1537-1553. doi:10.1007/s11269-011-9971-2 | es_ES |
dc.description.references | Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003 | es_ES |
dc.description.references | Zaniolo, M., Giuliani, M., Castelletti, A. F., & Pulido-Velazquez, M. (2018). Automatic design of basin-specific drought indexes for highly regulated water systems. Hydrology and Earth System Sciences, 22(4), 2409-2424. doi:10.5194/hess-22-2409-2018 | es_ES |
dc.description.references | Carmona, M., Máñez Costa, M., Andreu, J., Pulido-Velazquez, M., Haro-Monteagudo, D., Lopez-Nicolas, A., & Cremades, R. (2017). Assessing the effectiveness of Multi-Sector Partnerships to manage droughts: The case of the Jucar river basin. Earth’s Future, 5(7), 750-770. doi:10.1002/2017ef000545 | es_ES |
dc.description.references | PALLOTTINO, S., SECHI, G., & ZUDDAS, P. (2005). A DSS for water resources management under uncertainty by scenario analysis. Environmental Modelling & Software, 20(8), 1031-1042. doi:10.1016/j.envsoft.2004.09.012 | es_ES |
dc.description.references | Sechi, G. M., & Sulis, A. (2010). Drought mitigation using operative indicators in complex water systems. Physics and Chemistry of the Earth, Parts A/B/C, 35(3-5), 195-203. doi:10.1016/j.pce.2009.12.001 | es_ES |
dc.description.references | Svoboda, M. D., Fuchs, B. A., Poulsen, C. C., & Nothwehr, J. R. (2015). The drought risk atlas: Enhancing decision support for drought risk management in the United States. Journal of Hydrology, 526, 274-286. doi:10.1016/j.jhydrol.2015.01.006 | es_ES |
dc.description.references | Buttafuoco, G., Caloiero, T., Ricca, N., & Guagliardi, I. (2018). Assessment of drought and its uncertainty in a southern Italy area (Calabria region). Measurement, 113, 205-210. doi:10.1016/j.measurement.2017.08.007 | es_ES |
dc.description.references | Iglesias, A., & Garrote, L. (2015). Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management, 155, 113-124. doi:10.1016/j.agwat.2015.03.014 | es_ES |
dc.description.references | Lewandowski, J., Meinikmann, K., & Krause, S. (2020). Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water, 12(1), 296. doi:10.3390/w12010296 | es_ES |
dc.description.references | Forrester, J. W. (1968). Industrial Dynamics—After the First Decade. Management Science, 14(7), 398-415. doi:10.1287/mnsc.14.7.398 | es_ES |
dc.description.references | Sušnik, J., Molina, J.-L., Vamvakeridou-Lyroudia, L. S., Savić, D. A., & Kapelan, Z. (2012). Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management. Water Resources Management, 27(3), 819-841. doi:10.1007/s11269-012-0217-8 | es_ES |
dc.description.references | Mirchi, A., Madani, K., Watkins, D., & Ahmad, S. (2012). Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resources Management, 26(9), 2421-2442. doi:10.1007/s11269-012-0024-2 | es_ES |
dc.description.references | Simonovic, S. (2002). World water dynamics: global modeling of water resources. Journal of Environmental Management, 66(3), 249-267. doi:10.1016/s0301-4797(02)90585-2 | es_ES |
dc.description.references | Saysel, A. K., Barlas, Y., & Yenigün, O. (2002). Environmental sustainability in an agricultural development project: a system dynamics approach. Journal of Environmental Management, 64(3), 247-260. doi:10.1006/jema.2001.0488 | es_ES |
dc.description.references | Winz, I., Brierley, G., & Trowsdale, S. (2008). The Use of System Dynamics Simulation in Water Resources Management. Water Resources Management, 23(7), 1301-1323. doi:10.1007/s11269-008-9328-7 | es_ES |
dc.description.references | Nikolic, V. V., & Simonovic, S. P. (2015). Multi-method Modeling Framework for Support of Integrated Water Resources Management. Environmental Processes, 2(3), 461-483. doi:10.1007/s40710-015-0082-6 | es_ES |
dc.description.references | Madani, K., & Mariño, M. A. (2009). System Dynamics Analysis for Managing Iran’s Zayandeh-Rud River Basin. Water Resources Management, 23(11), 2163-2187. doi:10.1007/s11269-008-9376-z | es_ES |
dc.description.references | Gleick, P. H. (2000). A Look at Twenty-first Century Water Resources Development. Water International, 25(1), 127-138. doi:10.1080/02508060008686804 | es_ES |
dc.description.references | Qaiser, K., Ahmad, S., Johnson, W., & Batista, J. (2011). Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region. Journal of Environmental Management, 92(8), 2061-2068. doi:10.1016/j.jenvman.2011.03.031 | es_ES |
dc.description.references | Sušnik, J., Vamvakeridou-Lyroudia, L. S., Savić, D. A., & Kapelan, Z. (2012). Integrated System Dynamics Modelling for water scarcity assessment: Case study of the Kairouan region. Science of The Total Environment, 440, 290-306. doi:10.1016/j.scitotenv.2012.05.085 | es_ES |
dc.description.references | Sehlke, G., & Jacobson, J. (2005). System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model. Ground Water, 43(5), 722-730. doi:10.1111/j.1745-6584.2005.00065.x | es_ES |
dc.description.references | Li, L., & Simonovic, S. P. (2002). System dynamics model for predicting floods from snowmelt in North American prairie watersheds. Hydrological Processes, 16(13), 2645-2666. doi:10.1002/hyp.1064 | es_ES |
dc.description.references | Ahmad, S., & Prashar, D. (2010). Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model. Water Resources Management, 24(13), 3371-3395. doi:10.1007/s11269-010-9611-2 | es_ES |
dc.description.references | Apperl, B., Pulido-Velazquez, M., Andreu, J., & Karjalainen, T. P. (2015). Contribution of the multi-attribute value theory to conflict resolution in groundwater management – application to the Mancha Oriental groundwater system, Spain. Hydrology and Earth System Sciences, 19(3), 1325-1337. doi:10.5194/hess-19-1325-2015 | es_ES |
dc.description.references | Macian-Sorribes, H., & Pulido-Velazquez, M. (2017). Integrating Historical Operating Decisions and Expert Criteria into a DSS for the Management of a Multireservoir System. Journal of Water Resources Planning and Management, 143(1), 04016069. doi:10.1061/(asce)wr.1943-5452.0000712 | es_ES |
dc.description.references | Escriva-Bou, A., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2017). Economic Value of Climate Change Adaptation Strategies for Water Management in Spain’s Jucar Basin. Journal of Water Resources Planning and Management, 143(5), 04017005. doi:10.1061/(asce)wr.1943-5452.0000735 | es_ES |
dc.description.references | Pulido-Velazquez, M. A., Sahuquillo-Herraiz, A., Camilo Ochoa-Rivera, J., & Pulido-Velazquez, D. (2005). Modeling of stream–aquifer interaction: the embedded multireservoir model. Journal of Hydrology, 313(3-4), 166-181. doi:10.1016/j.jhydrol.2005.02.026 | es_ES |
dc.description.references | Sahuquillo, A. (1983). An eigenvalue numerical technique for solving unsteady linear groundwater models continuously in time. Water Resources Research, 19(1), 87-93. doi:10.1029/wr019i001p00087 | es_ES |
dc.description.references | Estrela, T., & Sahuquillo, A. (1997). Modeling the Response of a Karstic Spring at Arteta Aquifer in Spain. Ground Water, 35(1), 18-24. doi:10.1111/j.1745-6584.1997.tb00055.x | es_ES |
dc.description.references | Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-x | es_ES |
dc.description.references | Haro-Monteagudo, D., Solera, A., & Andreu, J. (2017). Drought early warning based on optimal risk forecasts in regulated river systems: Application to the Jucar River Basin (Spain). Journal of Hydrology, 544, 36-45. doi:10.1016/j.jhydrol.2016.11.022 | es_ES |
dc.description.references | Howitt, R. E. (1995). Positive Mathematical Programming. American Journal of Agricultural Economics, 77(2), 329-342. doi:10.2307/1243543 | es_ES |
dc.description.references | Malard, J. J., Inam, A., Hassanzadeh, E., Adamowski, J., Tuy, H. A., & Melgar-Quiñonez, H. (2017). Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models. Environmental Modelling & Software, 96, 410-420. doi:10.1016/j.envsoft.2017.06.053 | es_ES |
dc.description.references | Vidal-Legaz, B., Martínez-Fernández, J., Picón, A. S., & Pugnaire, F. I. (2013). Trade-offs between maintenance of ecosystem services and socio-economic development in rural mountainous communities in southern Spain: A dynamic simulation approach. Journal of Environmental Management, 131, 280-297. doi:10.1016/j.jenvman.2013.09.036 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |