- -

Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ibáñez Usach, Carmen es_ES
dc.contributor.author Hernández-Figueirido, D. es_ES
dc.contributor.author Piquer, A. es_ES
dc.date.accessioned 2021-03-05T04:32:02Z
dc.date.available 2021-03-05T04:32:02Z
dc.date.issued 2021-03-01 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163179
dc.description.abstract [EN] In this paper, the results of experimental tests conducted on concrete-filled steel tubular (CFST) columns are presented. There is currently a deficit of data available that can be used to evaluate current guidance documents and provide assessment to improve their accuracy when considering the behaviour of CFST columns filled with high strength concrete. Thus, this paper aims to increase the volume of experimental data available with a series of groups of tests on stub CFST columns subject to axial compression. Among the specimens of the same group only one dimension changes, the steel tube thickness. The columns are filled with both normal and high strength concrete for comparison purposes. The use of high strength concrete in circular tubes increases the concrete contribution, but this effect does not fulfil in rectangular specimens where also the confinement is less effective than in circular CFST even when the former have thin steel tubes and high strength concrete. The specifications of four commonly used codes are discussed. Comparison of their predictions with the experimental data collected shows that AISC is conservative but EC4, DBJ and AS produce similar non-conservative predictions. es_ES
dc.description.sponsorship The authors would like to express their sincere gratitude to Universitat Jaume I for the funding provided through the projects P1- 1A2015-06 and UJI-B2018-58. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Composite stub columns es_ES
dc.subject Concrete-filled steel tubes es_ES
dc.subject High strength concrete es_ES
dc.subject Sectional capacity es_ES
dc.subject Eurocode 4 es_ES
dc.subject AISC es_ES
dc.subject DBJ es_ES
dc.subject AS es_ES
dc.subject Steel wall thickness es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.111687 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-B2018-58/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1·1A2015-06/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Ibáñez Usach, C.; Hernández-Figueirido, D.; Piquer, A. (2021). Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment. Engineering Structures. 230:1-12. https://doi.org/10.1016/j.engstruct.2020.111687 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.111687 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 230 es_ES
dc.relation.pasarela S\425675 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.description.references Han, L.-H. (2002). Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 58(3), 353-372. doi:10.1016/s0143-974x(01)00059-1 es_ES
dc.description.references Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049-1068. doi:10.1016/j.jcsr.2003.10.001 es_ES
dc.description.references Lam, D., & Williams, C. A. (2004). Experimental study on concrete filled square hollow sections. Steel and Composite Structures, 4(2), 95-112. doi:10.12989/scs.2004.4.2.095 es_ES
dc.description.references Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. Journal of Structural Engineering, 130(2), 180-188. doi:10.1061/(asce)0733-9445(2004)130:2(180) es_ES
dc.description.references Tao, Z., Han, L.-H., & Wang, Z.-B. (2005). Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research, 61(7), 962-983. doi:10.1016/j.jcsr.2004.12.003 es_ES
dc.description.references Han, L.-H., Yao, G.-H., & Zhao, X.-L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61(9), 1241-1269. doi:10.1016/j.jcsr.2005.01.004 es_ES
dc.description.references Liang, Q. Q., & Fragomeni, S. (2009). Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. Journal of Constructional Steel Research, 65(12), 2186-2196. doi:10.1016/j.jcsr.2009.06.015 es_ES
dc.description.references Thayalan, P., Aly, T., & Patnaikuni, I. (2009). Behaviour of concrete-filled steel tubes under static and variable repeated loading. Journal of Constructional Steel Research, 65(4), 900-908. doi:10.1016/j.jcsr.2008.07.023 es_ES
dc.description.references Ekmekyapar, T., & AL-Eliwi, B. J. M. (2016). Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Structures, 105, 220-230. doi:10.1016/j.tws.2016.04.004 es_ES
dc.description.references Wang, W., Ma, H., Li, Z., & Tang, Z. (2017). Size effect in circular concrete-filled steel tubes with different diameter-to-thickness ratios under axial compression. Engineering Structures, 151, 554-567. doi:10.1016/j.engstruct.2017.08.022 es_ES
dc.description.references Patel, V. I. (2020). Analysis of uniaxially loaded short round-ended concrete-filled steel tubular beam-columns. Engineering Structures, 205, 110098. doi:10.1016/j.engstruct.2019.110098 es_ES
dc.description.references Liu, D., Gho, W.-M., & Yuan, J. (2003). Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 59(12), 1499-1515. doi:10.1016/s0143-974x(03)00106-8 es_ES
dc.description.references Liu, D. (2005). Tests on high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 61(7), 902-911. doi:10.1016/j.jcsr.2005.01.001 es_ES
dc.description.references Liu, D., & Gho, W.-M. (2005). Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns. Thin-Walled Structures, 43(8), 1131-1142. doi:10.1016/j.tws.2005.03.007 es_ES
dc.description.references Ellobody, E., Young, B., & Lam, D. (2006). Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62(7), 706-715. doi:10.1016/j.jcsr.2005.11.002 es_ES
dc.description.references Yu, Q., Tao, Z., & Wu, Y.-X. (2008). Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Structures, 46(4), 362-370. doi:10.1016/j.tws.2007.10.001 es_ES
dc.description.references Ibañez, C., Hernández-Figueirido, D., & Piquer, A. (2018). Shape effect on axially loaded high strength CFST stub columns. Journal of Constructional Steel Research, 147, 247-256. doi:10.1016/j.jcsr.2018.04.005 es_ES
dc.description.references Chen, S., Zhang, R., Jia, L.-J., Wang, J.-Y., & Gu, P. (2018). Structural behavior of UHPC filled steel tube columns under axial loading. Thin-Walled Structures, 130, 550-563. doi:10.1016/j.tws.2018.06.016 es_ES
dc.description.references Wang ZB, Tao Z, Han LH, UY B, Lam D, Kang WH. Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng Struct 2017; 135: 209–221. es_ES
dc.description.references Tao, Z., Brian, U. Y., Han, L. H., & He, S. H. (2008). Design of Concrete-Filled Steel Tubular Members According to the Australian Standard AS 5100 Model and Calibration. Australian Journal of Structural Engineering, 8(3), 197-214. doi:10.1080/13287982.2008.11464998 es_ES
dc.description.references Lai, Z., & Varma, A. H. (2015). Noncompact and slender circular CFT members: Experimental database, analysis, and design. Journal of Constructional Steel Research, 106, 220-233. doi:10.1016/j.jcsr.2014.11.005 es_ES
dc.description.references Thai, S., Thai, H.-T., Uy, B., & Ngo, T. (2019). Concrete-filled steel tubular columns: Test database, design and calibration. Journal of Constructional Steel Research, 157, 161-181. doi:10.1016/j.jcsr.2019.02.024 es_ES
dc.description.references CEN EN 1994-1-1. Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for buildings. Brussels, Belgium: Comité Européen de Normalisation; 2004. es_ES
dc.description.references AS/NZS2327: Composite Structures-Composite steel-concrete construction in Buildings. Australian Standard; 2017. es_ES
dc.description.references DBJ13-51-2010: Technical specification for concrete-filled steel tubular structures. Fuzhou, China. The Construction Department of Fujian Province; 2010. es_ES
dc.description.references AISC-360-16: Specification for Structural Steel Buildings. Chicago, USA. American Institute of Steel Construction; 2016. es_ES
dc.description.references Pavia E, Hernandez-Figueirido D, Gardoni P. Probabilistic sectional capacity models for rectangular concrete-filled steel, columns based on experimental observations. In: 8th international conference on steel and aluminium structures, Hong Kong, 2016. es_ES
dc.description.references Piquer, A., Ibañez, C., & Hernández-Figueirido, D. (2019). Structural response of concrete-filled round-ended stub columns subjected to eccentric loads. Engineering Structures, 184, 318-328. doi:10.1016/j.engstruct.2019.01.091 es_ES
dc.description.references Hernández-Figueirido, D., Romero, M. L., Bonet, J. L., & Montalvá, J. M. (2012). Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities. Journal of Constructional Steel Research, 68(1), 107-117. doi:10.1016/j.jcsr.2011.07.014 es_ES
dc.description.references CEN EN 1993-1-1. Eurocode 3: Design of steel structures. Part 1.1: General rules and rules for buildings. Brussels, Belgium: Comité Européen de Normalisation; 2005. es_ES
dc.description.references Han, L.-H., Zhao, X.-L., & Tao, Z. (2001). Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns. Steel and Composite Structures, 1(1), 51-74. doi:10.12989/scs.2001.1.1.051 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem