Mostrar el registro sencillo del ítem
dc.contributor.author | Ibáñez Usach, Carmen | es_ES |
dc.contributor.author | Hernández-Figueirido, D. | es_ES |
dc.contributor.author | Piquer, A. | es_ES |
dc.date.accessioned | 2021-03-05T04:32:02Z | |
dc.date.available | 2021-03-05T04:32:02Z | |
dc.date.issued | 2021-03-01 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163179 | |
dc.description.abstract | [EN] In this paper, the results of experimental tests conducted on concrete-filled steel tubular (CFST) columns are presented. There is currently a deficit of data available that can be used to evaluate current guidance documents and provide assessment to improve their accuracy when considering the behaviour of CFST columns filled with high strength concrete. Thus, this paper aims to increase the volume of experimental data available with a series of groups of tests on stub CFST columns subject to axial compression. Among the specimens of the same group only one dimension changes, the steel tube thickness. The columns are filled with both normal and high strength concrete for comparison purposes. The use of high strength concrete in circular tubes increases the concrete contribution, but this effect does not fulfil in rectangular specimens where also the confinement is less effective than in circular CFST even when the former have thin steel tubes and high strength concrete. The specifications of four commonly used codes are discussed. Comparison of their predictions with the experimental data collected shows that AISC is conservative but EC4, DBJ and AS produce similar non-conservative predictions. | es_ES |
dc.description.sponsorship | The authors would like to express their sincere gratitude to Universitat Jaume I for the funding provided through the projects P1- 1A2015-06 and UJI-B2018-58. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Composite stub columns | es_ES |
dc.subject | Concrete-filled steel tubes | es_ES |
dc.subject | High strength concrete | es_ES |
dc.subject | Sectional capacity | es_ES |
dc.subject | Eurocode 4 | es_ES |
dc.subject | AISC | es_ES |
dc.subject | DBJ | es_ES |
dc.subject | AS | es_ES |
dc.subject | Steel wall thickness | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2020.111687 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//UJI-B2018-58/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1·1A2015-06/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Ibáñez Usach, C.; Hernández-Figueirido, D.; Piquer, A. (2021). Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment. Engineering Structures. 230:1-12. https://doi.org/10.1016/j.engstruct.2020.111687 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2020.111687 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 230 | es_ES |
dc.relation.pasarela | S\425675 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.description.references | Han, L.-H. (2002). Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 58(3), 353-372. doi:10.1016/s0143-974x(01)00059-1 | es_ES |
dc.description.references | Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049-1068. doi:10.1016/j.jcsr.2003.10.001 | es_ES |
dc.description.references | Lam, D., & Williams, C. A. (2004). Experimental study on concrete filled square hollow sections. Steel and Composite Structures, 4(2), 95-112. doi:10.12989/scs.2004.4.2.095 | es_ES |
dc.description.references | Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. Journal of Structural Engineering, 130(2), 180-188. doi:10.1061/(asce)0733-9445(2004)130:2(180) | es_ES |
dc.description.references | Tao, Z., Han, L.-H., & Wang, Z.-B. (2005). Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research, 61(7), 962-983. doi:10.1016/j.jcsr.2004.12.003 | es_ES |
dc.description.references | Han, L.-H., Yao, G.-H., & Zhao, X.-L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61(9), 1241-1269. doi:10.1016/j.jcsr.2005.01.004 | es_ES |
dc.description.references | Liang, Q. Q., & Fragomeni, S. (2009). Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. Journal of Constructional Steel Research, 65(12), 2186-2196. doi:10.1016/j.jcsr.2009.06.015 | es_ES |
dc.description.references | Thayalan, P., Aly, T., & Patnaikuni, I. (2009). Behaviour of concrete-filled steel tubes under static and variable repeated loading. Journal of Constructional Steel Research, 65(4), 900-908. doi:10.1016/j.jcsr.2008.07.023 | es_ES |
dc.description.references | Ekmekyapar, T., & AL-Eliwi, B. J. M. (2016). Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Structures, 105, 220-230. doi:10.1016/j.tws.2016.04.004 | es_ES |
dc.description.references | Wang, W., Ma, H., Li, Z., & Tang, Z. (2017). Size effect in circular concrete-filled steel tubes with different diameter-to-thickness ratios under axial compression. Engineering Structures, 151, 554-567. doi:10.1016/j.engstruct.2017.08.022 | es_ES |
dc.description.references | Patel, V. I. (2020). Analysis of uniaxially loaded short round-ended concrete-filled steel tubular beam-columns. Engineering Structures, 205, 110098. doi:10.1016/j.engstruct.2019.110098 | es_ES |
dc.description.references | Liu, D., Gho, W.-M., & Yuan, J. (2003). Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 59(12), 1499-1515. doi:10.1016/s0143-974x(03)00106-8 | es_ES |
dc.description.references | Liu, D. (2005). Tests on high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 61(7), 902-911. doi:10.1016/j.jcsr.2005.01.001 | es_ES |
dc.description.references | Liu, D., & Gho, W.-M. (2005). Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns. Thin-Walled Structures, 43(8), 1131-1142. doi:10.1016/j.tws.2005.03.007 | es_ES |
dc.description.references | Ellobody, E., Young, B., & Lam, D. (2006). Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62(7), 706-715. doi:10.1016/j.jcsr.2005.11.002 | es_ES |
dc.description.references | Yu, Q., Tao, Z., & Wu, Y.-X. (2008). Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Structures, 46(4), 362-370. doi:10.1016/j.tws.2007.10.001 | es_ES |
dc.description.references | Ibañez, C., Hernández-Figueirido, D., & Piquer, A. (2018). Shape effect on axially loaded high strength CFST stub columns. Journal of Constructional Steel Research, 147, 247-256. doi:10.1016/j.jcsr.2018.04.005 | es_ES |
dc.description.references | Chen, S., Zhang, R., Jia, L.-J., Wang, J.-Y., & Gu, P. (2018). Structural behavior of UHPC filled steel tube columns under axial loading. Thin-Walled Structures, 130, 550-563. doi:10.1016/j.tws.2018.06.016 | es_ES |
dc.description.references | Wang ZB, Tao Z, Han LH, UY B, Lam D, Kang WH. Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng Struct 2017; 135: 209–221. | es_ES |
dc.description.references | Tao, Z., Brian, U. Y., Han, L. H., & He, S. H. (2008). Design of Concrete-Filled Steel Tubular Members According to the Australian Standard AS 5100 Model and Calibration. Australian Journal of Structural Engineering, 8(3), 197-214. doi:10.1080/13287982.2008.11464998 | es_ES |
dc.description.references | Lai, Z., & Varma, A. H. (2015). Noncompact and slender circular CFT members: Experimental database, analysis, and design. Journal of Constructional Steel Research, 106, 220-233. doi:10.1016/j.jcsr.2014.11.005 | es_ES |
dc.description.references | Thai, S., Thai, H.-T., Uy, B., & Ngo, T. (2019). Concrete-filled steel tubular columns: Test database, design and calibration. Journal of Constructional Steel Research, 157, 161-181. doi:10.1016/j.jcsr.2019.02.024 | es_ES |
dc.description.references | CEN EN 1994-1-1. Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for buildings. Brussels, Belgium: Comité Européen de Normalisation; 2004. | es_ES |
dc.description.references | AS/NZS2327: Composite Structures-Composite steel-concrete construction in Buildings. Australian Standard; 2017. | es_ES |
dc.description.references | DBJ13-51-2010: Technical specification for concrete-filled steel tubular structures. Fuzhou, China. The Construction Department of Fujian Province; 2010. | es_ES |
dc.description.references | AISC-360-16: Specification for Structural Steel Buildings. Chicago, USA. American Institute of Steel Construction; 2016. | es_ES |
dc.description.references | Pavia E, Hernandez-Figueirido D, Gardoni P. Probabilistic sectional capacity models for rectangular concrete-filled steel, columns based on experimental observations. In: 8th international conference on steel and aluminium structures, Hong Kong, 2016. | es_ES |
dc.description.references | Piquer, A., Ibañez, C., & Hernández-Figueirido, D. (2019). Structural response of concrete-filled round-ended stub columns subjected to eccentric loads. Engineering Structures, 184, 318-328. doi:10.1016/j.engstruct.2019.01.091 | es_ES |
dc.description.references | Hernández-Figueirido, D., Romero, M. L., Bonet, J. L., & Montalvá, J. M. (2012). Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities. Journal of Constructional Steel Research, 68(1), 107-117. doi:10.1016/j.jcsr.2011.07.014 | es_ES |
dc.description.references | CEN EN 1993-1-1. Eurocode 3: Design of steel structures. Part 1.1: General rules and rules for buildings. Brussels, Belgium: Comité Européen de Normalisation; 2005. | es_ES |
dc.description.references | Han, L.-H., Zhao, X.-L., & Tao, Z. (2001). Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns. Steel and Composite Structures, 1(1), 51-74. doi:10.12989/scs.2001.1.1.051 | es_ES |