Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M.-C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. doi:10.1016/j.ijbiomac.2018.12.002
Farto-Vaamonde, X., Auriemma, G., Aquino, R. P., Concheiro, A., & Alvarez-Lorenzo, C. (2019). Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 141, 100-110. doi:10.1016/j.ejpb.2019.05.018
Fajardo, J., Valarezo, L., López, L., & Sarmiento, A. (2013). Experiencies in obtaining polymeric composites reinforced with natural fiber from Ecuador. Ingenius, (9). doi:10.17163/ings.n9.2013.04
[+]
Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M.-C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. doi:10.1016/j.ijbiomac.2018.12.002
Farto-Vaamonde, X., Auriemma, G., Aquino, R. P., Concheiro, A., & Alvarez-Lorenzo, C. (2019). Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 141, 100-110. doi:10.1016/j.ejpb.2019.05.018
Fajardo, J., Valarezo, L., López, L., & Sarmiento, A. (2013). Experiencies in obtaining polymeric composites reinforced with natural fiber from Ecuador. Ingenius, (9). doi:10.17163/ings.n9.2013.04
Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751
Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082
Gao, H., Hu, S., Su, F., Zhang, J., & Tang, G. (2011). Mechanical, thermal, and biodegradability properties of PLA/modified starch blends. Polymer Composites, 32(12), 2093-2100. doi:10.1002/pc.21241
Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016
Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009
Iglesias Montes, M. L., Cyras, V. P., Manfredi, L. B., Pettarín, V., & Fasce, L. A. (2020). Fracture evaluation of plasticized polylactic acid / poly (3-HYDROXYBUTYRATE) blends for commodities replacement in packaging applications. Polymer Testing, 84, 106375. doi:10.1016/j.polymertesting.2020.106375
Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079
Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332
Umamaheswara Rao, R., Venkatanarayana, B., & Suman, K. N. . (2019). Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today: Proceedings, 18, 85-97. doi:10.1016/j.matpr.2019.06.280
Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69
Wang, X., Peng, S., Chen, H., Yu, X., & Zhao, X. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Composites Part B: Engineering, 173, 107028. doi:10.1016/j.compositesb.2019.107028
Kilic, N. T., Can, B. N., Kodal, M., & Ozkoc, G. (2018). Compatibilization of PLA/PBAT blends by using Epoxy-POSS. Journal of Applied Polymer Science, 136(12), 47217. doi:10.1002/app.47217
Gere, D., & Czigany, T. (2020). Future trends of plastic bottle recycling: Compatibilization of PET and PLA. Polymer Testing, 81, 106160. doi:10.1016/j.polymertesting.2019.106160
Palma-Ramírez, D., Torres-Huerta, A. M., Domínguez-Crespo, M. A., Del Angel-López, D., Flores-Vela, A. I., & de la Fuente, D. (2019). Data supporting the morphological/topographical properties and the degradability on PET/PLA and PET/chitosan blends. Data in Brief, 25, 104012. doi:10.1016/j.dib.2019.104012
Hachemi, R., Belhaneche-Bensemra, N., & Massardier, V. (2013). Elaboration and characterization of bioblends based on PVC/PLA. Journal of Applied Polymer Science, 131(7), n/a-n/a. doi:10.1002/app.40045
Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644
Jašo, V., Cvetinov, M., Rakić, S., & Petrović, Z. S. (2014). Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41104
Mandal, D. K., Bhunia, H., & Bajpai, P. K. (2018). Thermal degradation kinetics of PP/PLA nanocomposite blends. Journal of Thermoplastic Composite Materials, 32(12), 1714-1730. doi:10.1177/0892705718805130
Azizi, S., Azizi, M., & Sabetzadeh, M. (2019). The Role of Multiwalled Carbon Nanotubes in the Mechanical, Thermal, Rheological, and Electrical Properties of PP/PLA/MWCNTs Nanocomposites. Journal of Composites Science, 3(3), 64. doi:10.3390/jcs3030064
Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396
Boubekeur, B., Belhaneche‐Bensemra, N., & Massardier, V. (2020). Low‐Density Polyethylene/Poly(Lactic Acid) Blends Reinforced by Waste Wood Flour. Journal of Vinyl and Additive Technology, 26(4), 443-451. doi:10.1002/vnl.21759
Torres Huerta, A. M. (2019). PREPARATION AND DEGRADATION STUDY OF HDPE/PLA POLYMER BLENDS FOR PACKAGING APPLICATIONS. Revista Mexicana de Ingeniería Química, 18(1), 251-271. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/torres
Dolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161
Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886
Hermes, H. E., Higgins, J. S., & Bucknall, D. G. (1997). Investigation of the melt interface between polyethylene and polystyrene using neutron reflectivity. Polymer, 38(4), 985-989. doi:10.1016/s0032-3861(96)00719-7
Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254
Anderson, K. S., & Hillmyer, M. A. (2004). The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 45(26), 8809-8823. doi:10.1016/j.polymer.2004.10.047
Singh, G., Bhunia, H., Rajor, A., & Choudhary, V. (2010). Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends. Polymer Bulletin, 66(7), 939-953. doi:10.1007/s00289-010-0367-x
Djellali, S., Haddaoui, N., Sadoun, T., Bergeret, A., & Grohens, Y. (2013). Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iranian Polymer Journal, 22(4), 245-257. doi:10.1007/s13726-013-0126-6
Brito, G. F., Agrawal, P., & Mélo, T. J. A. (2016). Mechanical and Morphological Properties of PLA/BioPE Blend Compatibilized with E-GMA and EMA-GMA Copolymers. Macromolecular Symposia, 367(1), 176-182. doi:10.1002/masy.201500158
Zolali, A. M., & Favis, B. D. (2018). Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase. Macromolecules, 51(10), 3572-3581. doi:10.1021/acs.macromol.8b00464
Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., & Hillmyer, M. A. (2015). Reactive Compatibilization of Polylactide/Polypropylene Blends. Industrial & Engineering Chemistry Research, 54(23), 6108-6114. doi:10.1021/acs.iecr.5b00882
Quiles-Carrillo, L., Fenollar, O., Balart, R., Torres-Giner, S., Rallini, M., Dominici, F., & Torre, L. (2020). A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum. Express Polymer Letters, 14(6), 583-604. doi:10.3144/expresspolymlett.2020.48
Detyothin, S., Selke, S. E. M., Narayan, R., Rubino, M., & Auras, R. A. (2015). Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 132(28), n/a-n/a. doi:10.1002/app.42230
Semba, T., Kitagawa, K., Ishiaku, U. S., Kotaki, M., & Hamada, H. (2006). Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. Journal of Applied Polymer Science, 103(2), 1066-1074. doi:10.1002/app.25311
Srimalanon, P., Prapagdee, B., Markpin, T., & Sombatsompop, N. (2018). Effects of DCP as a free radical producer and HPQM as a biocide on the mechanical properties and antibacterial performance of in situ compatibilized PBS/PLA blends. Polymer Testing, 67, 331-341. doi:10.1016/j.polymertesting.2018.03.017
Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.2302
Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2
Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y
Butt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003
Frybort, S., Obersriebnig, M., Müller, U., Gindl-Altmutter, W., & Konnerth, J. (2014). Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 82-87. doi:10.1016/j.colsurfa.2014.05.055
Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1994). Effect of contact deformations on the adhesion of particles. Progress in Surface Science, 45(1-4), 131-143. doi:10.1016/0079-6816(94)90044-2
Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940
Li, Z.-M., Yang, W., Xie, B.-H., Yang, S. ., Yang, M.-B., Feng, J.-M., & Huang, R. (2003). Effects of compatibilization on the essential work of fracture parameters of in situ microfiber reinforced poly(ethylene terephtahalate)/polyethylene blend. Materials Research Bulletin, 38(14), 1867-1878. doi:10.1016/j.materresbull.2003.07.007
Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., & Lemstra, P. J. (2012). Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. European Polymer Journal, 48(1), 146-154. doi:10.1016/j.eurpolymj.2011.10.015
Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018
Zhou, Y., Wang, J., Cai, S.-Y., Wang, Z.-G., Zhang, N.-W., & Ren, J. (2018). Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polymer Bulletin, 75(12), 5437-5454. doi:10.1007/s00289-018-2339-5
Sewda, K., & Maiti, S. N. (2013). Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polymer Bulletin, 70(10), 2657-2674. doi:10.1007/s00289-013-0941-0
Gao, J., Bai, H., Zhang, Q., Gao, Y., Chen, L., & Fu, Q. (2012). Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Express Polymer Letters, 6(11), 860-870. doi:10.3144/expresspolymlett.2012.92
Ma, X., Yu, J., & Wang, N. (2005). Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics, 44(1), 94-101. doi:10.1002/polb.20669
Lu, X., Tang, L., Wang, L., Zhao, J., Li, D., Wu, Z., & Xiao, P. (2016). Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polymer Testing, 54, 90-97. doi:10.1016/j.polymertesting.2016.06.025
Zhao, M., Ding, X., Mi, J., Zhou, H., & Wang, X. (2017). Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid). Polymer Degradation and Stability, 146, 277-286. doi:10.1016/j.polymdegradstab.2017.11.003
Quitadamo, A., Massardier, V., Santulli, C., & Valente, M. (2018). Optimization of Thermoplastic Blend Matrix HDPE/PLA with Different Types and Levels of Coupling Agents. Materials, 11(12), 2527. doi:10.3390/ma11122527
Gallego, R., López-Quintana, S., Basurto, F., Núñez, K., Villarreal, N., & Merino, J. C. (2013). Synthesis of new compatibilizers to poly(lactic acid) blends. Polymer Engineering & Science, 54(3), 522-530. doi:10.1002/pen.23589
Lovinčić Milovanović, V., Hajdinjak, I., Lovriša, I., & Vrsaljko, D. (2019). The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE‐LD and PLA/PE‐HD polymer blends and their nanocomposites with TiO
2
and CaCO
3. Polymer Engineering & Science, 59(7), 1395-1408. doi:10.1002/pen.25124
Ji, D., Liu, Z., Lan, X., Wu, F., Xie, B., & Yang, M. (2013). Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39580
Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41414
[-]