Mostrar el registro sencillo del ítem
dc.contributor.author | Hidalgo, Ieda Geriberto | es_ES |
dc.contributor.author | Paredes Arquiola, Javier | es_ES |
dc.contributor.author | Andreu Álvarez, Joaquín | es_ES |
dc.contributor.author | Lerma-Elvira, Nestor | es_ES |
dc.contributor.author | Lopes, Joao Eduardo Goncalves | es_ES |
dc.contributor.author | Cioffi, Francesco | es_ES |
dc.date.accessioned | 2021-03-05T04:32:40Z | |
dc.date.available | 2021-03-05T04:32:40Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163194 | |
dc.description.abstract | [EN] Knowledge on the effects of climate change in a system can contribute to the better management of its water and energy resources. This study evaluates the consequences of alterations in the rainfall and temperature patterns for a hydroelectric plant. The methodology adopted consists of four steps. First, a hydrological model is developed for the chosen basin following a semi-distributed and conceptual approach. The hydrological model is calibrated utilizing the optimization algorithm Shuffled Complex Evolution University of Arizona (SCE-UA) and then validated. Secondly, a hydropower model is developed fora hydroelectric plant of the chosen basin. The hydropower model is adjusted to the physical characteristics of the plant. Thirdly, future climate scenarios are extracted from the literature for the studied area. These scenarios include quantitative and seasonal climate variations, as well as different initial reservoir levels. Fourth, the hydrological-hydropower model is simulated for 52 scenarios and the impact of changes in the rainfall and temperature patterns for hydropower generation is evaluated. For each scenario, the water storage in the reservoir and energy produced by the plant are analyzed. The financial impact for extreme scenarios is presented. The methodology is applied to the Tres Marias hydroelectric plant at the upper SAo Francisco river basin (Brazil) and it can be replicated to any other hydropower system. The results show that extreme positive values predicted for rainfall will likely not cause issues to the plant, considering a moderate rise in temperature. However, negative predictions for rainfall, regardless of changes in temperature, should be an alert to the authorities responsible for water and energy resources management. | es_ES |
dc.description.sponsorship | This study was funded by the Sao Paulo Research Foundation (FAPESP -grant #2018-00016-8), European Commission (EBW+ program), and National Council for Scientific and Technological Development (CNPq). The authors thank Companhia Energetica de Minas Gerais S.A. (CEMIG), Agencia Nacional de Aguas (ANA), Instituto Nacional de Meteorologia (INMET), and Camara de Comercializacao de Energia Eletrica (CCEE) for kindly providing the data needed to carry out this research. The authors also thank the developers of RS Minerve, computational tool utilized in this research, and Espaco da Escrita -Pro-Reitoria de Pesquisa (PRP/UNICAMP), for the language services provided. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Energy for Sustainable Development | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hydroelectric plants | es_ES |
dc.subject | Water resources | es_ES |
dc.subject | Energy resources | es_ES |
dc.subject | Hydrological model | es_ES |
dc.subject | Hydropower model | es_ES |
dc.subject | Climate variations | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Hydropower generation in future climate scenarios | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.esd.2020.10.007 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2018-00016-8/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Hidalgo, IG.; Paredes Arquiola, J.; Andreu Álvarez, J.; Lerma-Elvira, N.; Lopes, JEG.; Cioffi, F. (2020). Hydropower generation in future climate scenarios. Energy for Sustainable Development. 59:180-188. https://doi.org/10.1016/j.esd.2020.10.007 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.esd.2020.10.007 | es_ES |
dc.description.upvformatpinicio | 180 | es_ES |
dc.description.upvformatpfin | 188 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.identifier.eissn | 0973-0826 | es_ES |
dc.relation.pasarela | S\421460 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Boehlert, B., Strzepek, K. M., Gebretsadik, Y., Swanson, R., McCluskey, A., Neumann, J. E., … Martinich, J. (2016). Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation. Applied Energy, 183, 1511-1519. doi:10.1016/j.apenergy.2016.09.054 | es_ES |
dc.description.references | Caruso, B. S., King, R., Newton, S., & Zammit, C. (2016). Simulation of Climate Change Effects on Hydropower Operations in Mountain Headwater Lakes, New Zealand. River Research and Applications, 33(1), 147-161. doi:10.1002/rra.3056 | es_ES |
dc.description.references | Gaudard, L., Gabbi, J., Bauder, A., & Romerio, F. (2016). Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices. Water Resources Management, 30(4), 1325-1343. doi:10.1007/s11269-015-1216-3 | es_ES |
dc.description.references | Gaudard, L., Romerio, F., Dalla Valle, F., Gorret, R., Maran, S., Ravazzani, G., … Volonterio, M. (2014). Climate change impacts on hydropower in the Swiss and Italian Alps. Science of The Total Environment, 493, 1211-1221. doi:10.1016/j.scitotenv.2013.10.012 | es_ES |
dc.description.references | Gebre, S., Boissy, T., & Alfredsen, K. (2014). Sensitivity to climate change of the thermal structure and ice cover regime of three hydropower reservoirs. Journal of Hydrology, 510, 208-227. doi:10.1016/j.jhydrol.2013.12.023 | es_ES |
dc.description.references | Haguma, D., Leconte, R., Côté, P., Krau, S., & Brissette, F. (2014). Optimal Hydropower Generation Under Climate Change Conditions for a Northern Water Resources System. Water Resources Management, 28(13), 4631-4644. doi:10.1007/s11269-014-0763-3 | es_ES |
dc.description.references | Harrison, G. P., Whittington, H. W., & Wallace, A. R. (2003). Climate change impacts on financial risk in hydropower projects. IEEE Transactions on Power Systems, 18(4), 1324-1330. doi:10.1109/tpwrs.2003.818590 | es_ES |
dc.description.references | Hidalgo, I. G., Fontane, D. G., Soares F., S., Cicogna, M. A., & Lopes, J. E. G. (2010). Data Consolidation from Hydroelectric Plants. Journal of Energy Engineering, 136(3), 87-94. doi:10.1061/(asce)ey.1943-7897.0000024 | es_ES |
dc.description.references | Jahandideh-Tehrani, M., Bozorg Haddad, O., & Loáiciga, H. A. (2014). Hydropower Reservoir Management Under Climate Change: The Karoon Reservoir System. Water Resources Management, 29(3), 749-770. doi:10.1007/s11269-014-0840-7 | es_ES |
dc.description.references | Liu, X., Tang, Q., Voisin, N., & Cui, H. (2016). Projected impacts of climate change on hydropower potential in China. Hydrology and Earth System Sciences, 20(8), 3343-3359. doi:10.5194/hess-20-3343-2016 | es_ES |
dc.description.references | Lobanova, A., Koch, H., Liersch, S., Hattermann, F. F., & Krysanova, V. (2016). Impacts of changing climate on the hydrology and hydropower production of the Tagus River basin. Hydrological Processes, 30(26), 5039-5052. doi:10.1002/hyp.10966 | es_ES |
dc.description.references | Lumbroso, D. M., Woolhouse, G., & Jones, L. (2015). A review of the consideration of climate change in the planning of hydropower schemes in sub-Saharan Africa. Climatic Change, 133(4), 621-633. doi:10.1007/s10584-015-1492-1 | es_ES |
dc.description.references | Madani, K., Guégan, M., & Uvo, C. B. (2014). Climate change impacts on high-elevation hydroelectricity in California. Journal of Hydrology, 510, 153-163. doi:10.1016/j.jhydrol.2013.12.001 | es_ES |
dc.description.references | Maran, S., Volonterio, M., & Gaudard, L. (2014). Climate change impacts on hydropower in an alpine catchment. Environmental Science & Policy, 43, 15-25. doi:10.1016/j.envsci.2013.12.001 | es_ES |
dc.description.references | Park, J. Y., & Kim, S. J. (2014). Potential Impacts of Climate Change on the Reliability of Water and Hydropower Supply from a Multipurpose Dam in South Korea. JAWRA Journal of the American Water Resources Association, 50(5), 1273-1288. doi:10.1111/jawr.12190 | es_ES |
dc.description.references | Sample, J. E., Duncan, N., Ferguson, M., & Cooksley, S. (2015). Scotland׳s hydropower: Current capacity, future potential and the possible impacts of climate change. Renewable and Sustainable Energy Reviews, 52, 111-122. doi:10.1016/j.rser.2015.07.071 | es_ES |
dc.description.references | Sánchez, A., & Izzo, M. (2016). Micro hydropower: an alternative for climate change mitigation, adaptation, and development of marginalized local communities in Hispaniola Island. Climatic Change, 140(1), 79-87. doi:10.1007/s10584-016-1865-0 | es_ES |
dc.description.references | Shrestha, S., Bajracharya, A. R., & Babel, M. S. (2016). Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal. Climate Risk Management, 14, 27-41. doi:10.1016/j.crm.2016.08.002 | es_ES |
dc.description.references | Spalding-Fecher, R., Joyce, B., & Winkler, H. (2017). Climate change and hydropower in the Southern African Power Pool and Zambezi River Basin: System-wide impacts and policy implications. Energy Policy, 103, 84-97. doi:10.1016/j.enpol.2016.12.009 | es_ES |
dc.description.references | Tarroja, B., AghaKouchak, A., & Samuelsen, S. (2016). Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation. Energy, 111, 295-305. doi:10.1016/j.energy.2016.05.131 | es_ES |
dc.description.references | Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739 | es_ES |
dc.description.references | Timalsina, N. P., Alfredsen, K. T., & Killingtveit, Å. (2015). Impact of climate change on ice regime in a river regulated for hydropower. Canadian Journal of Civil Engineering, 42(9), 634-644. doi:10.1139/cjce-2014-0261 | es_ES |
dc.description.references | Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., & Rinaldo, A. (2011). Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. Journal of Hydrology, 401(1-2), 77-89. doi:10.1016/j.jhydrol.2011.02.010 | es_ES |
dc.description.references | Wang, B., Liang, X.-J., Zhang, H., Wang, L., & Wei, Y.-M. (2014). Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model. Energy Policy, 65, 701-707. doi:10.1016/j.enpol.2013.10.002 | es_ES |