Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez Pueyo, Adrián | es_ES |
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Castro, Alberto | es_ES |
dc.date.accessioned | 2021-03-09T04:31:53Z | |
dc.date.available | 2021-03-09T04:31:53Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.issn | 1549-9618 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163475 | |
dc.description.abstract | [EN] We consider the numerical propagation of models that combine both quantum and classical degrees of freedom, usually, electrons and nuclei, respectively. We focus, in our computational examples, on the case in which the quantum electrons are modeled with time-dependent density-functional theory, although the methods discussed below can be used with any other level of theory. Often, for these so-called quantum classical molecular dynamics models, one uses some propagation technique to deal with the quantum part and a different one for the classical equations. While the resulting procedure may, in principle, be consistent, it can however spoil some of the properties of the methods, such as the accuracy order with respect to the time step or the preservation of the geometrical structure of the equations. Few methods have been developed specifically for hybrid quantum-classical models. We propose using the same method for both the quantum and classical particles, in particular, one family of techniques that proves to be very efficient for the propagation of Schrodinger-like equations: the (quasi)-commutator free Magnus expansions. These have been developed, however, for linear systems, yet our problem is nonlinear: formally, the full quantum-classical system can be rewritten as a nonlinear Schrodinger equation, i.e., one in which the Hamiltonian depends on the system itself. The Magnus expansion algorithms for linear systems require the application of the Hamiltonian at intermediate points in a given propagating interval. For nonlinear systems, this poses a problem as this Hamiltonian is unknown due to its dependence on the state. We approximate it by employing a higher order extrapolation using previous steps as input. The resulting technique can then be regarded as a multistep technique or, alternatively, as a predictor corrector formula. | es_ES |
dc.description.sponsorship | A.C. acknowledges support from the MINECO FIS2017-82426-P grant. S.B. acknowledges the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the program "Geometry, compatibility and structure preservation in computational differential equations (2019)", EPSRC grant number EP/R014604/1. S.B. also acknowledges funding by the Ministerio de Economia y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE) and the Ministerio de Ciencia Innovacion y Universidades, through Programa de Estancias de profesores e investigadores senior en centros extranjeros, incluido el Programa "Salvador de Madariaga" 2019 (PRX19/00295). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | Journal of Chemical Theory and Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acs.jctc.9b01031 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//EP%2FR014604%2F1/GB/Isaac Newton Institute for Mathematical Sciences/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-82426-P/ES/OPTIMIZACION Y MODELOS MICROSCOPICOS DESDE PRIMEROS PRINCIPIOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//PRX19%2F00295/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Gómez Pueyo, A.; Blanes Zamora, S.; Castro, A. (2020). Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods. Journal of Chemical Theory and Computation. 16(3):1420-1430. https://doi.org/10.1021/acs.jctc.9b01031 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acs.jctc.9b01031 | es_ES |
dc.description.upvformatpinicio | 1420 | es_ES |
dc.description.upvformatpfin | 1430 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.pmid | 31999460 | es_ES |
dc.relation.pasarela | S\428761 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Isaac Newton Institute for Mathematical Sciences | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Molner, S. P. (1999). The Art of Molecular Dynamics Simulation (Rapaport, D. C.). Journal of Chemical Education, 76(2), 171. doi:10.1021/ed076p171 | es_ES |
dc.description.references | Fermi, E.; Pasta, J.; Ulam, S. Studies of Nonlinear Problems I, Los Alamos Report LA 1940; Los Alamos Scientific Laboratory, 1955; reproduced in Nonlinear Wave Motion. Providence, RI, 1974. | es_ES |
dc.description.references | Alder, B. J., & Wainwright, T. E. (1959). Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics, 31(2), 459-466. doi:10.1063/1.1730376 | es_ES |
dc.description.references | Bornemann, F. A., Nettesheim, P., & Schütte, C. (1996). Quantum‐classical molecular dynamics as an approximation to full quantum dynamics. The Journal of Chemical Physics, 105(3), 1074-1083. doi:10.1063/1.471952 | es_ES |
dc.description.references | DOLTSINIS, N. L., & MARX, D. (2002). FIRST PRINCIPLES MOLECULAR DYNAMICS INVOLVING EXCITED STATES AND NONADIABATIC TRANSITIONS. Journal of Theoretical and Computational Chemistry, 01(02), 319-349. doi:10.1142/s0219633602000257 | es_ES |
dc.description.references | Runge, E., & Gross, E. K. U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52(12), 997-1000. doi:10.1103/physrevlett.52.997 | es_ES |
dc.description.references | Marques, M. A. L., Maitra, N. T., Nogueira, F. M. S., Gross, E. K. U., & Rubio, A. (Eds.). (2012). Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics. doi:10.1007/978-3-642-23518-4 | es_ES |
dc.description.references | Verlet, L. (1967). Computer «Experiments» on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(1), 98-103. doi:10.1103/physrev.159.98 | es_ES |
dc.description.references | Hairer, E., & Wanner, G. (1996). Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics. doi:10.1007/978-3-642-05221-7 | es_ES |
dc.description.references | Castro, A., Marques, M. A. L., & Rubio, A. (2004). Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics, 121(8), 3425-3433. doi:10.1063/1.1774980 | es_ES |
dc.description.references | Schleife, A., Draeger, E. W., Kanai, Y., & Correa, A. A. (2012). Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations. The Journal of Chemical Physics, 137(22), 22A546. doi:10.1063/1.4758792 | es_ES |
dc.description.references | Russakoff, A., Li, Y., He, S., & Varga, K. (2016). Accuracy and computational efficiency of real-time subspace propagation schemes for the time-dependent density functional theory. The Journal of Chemical Physics, 144(20), 204125. doi:10.1063/1.4952646 | es_ES |
dc.description.references | Kidd, D., Covington, C., & Varga, K. (2017). Exponential integrators in time-dependent density-functional calculations. Physical Review E, 96(6). doi:10.1103/physreve.96.063307 | es_ES |
dc.description.references | Dewhurst, J. K., Krieger, K., Sharma, S., & Gross, E. K. U. (2016). An efficient algorithm for time propagation as applied to linearized augmented plane wave method. Computer Physics Communications, 209, 92-95. doi:10.1016/j.cpc.2016.09.001 | es_ES |
dc.description.references | Akama, T., Kobayashi, O., & Nanbu, S. (2015). Development of efficient time-evolution method based on three-term recurrence relation. The Journal of Chemical Physics, 142(20), 204104. doi:10.1063/1.4921465 | es_ES |
dc.description.references | Kolesov, G., Grånäs, O., Hoyt, R., Vinichenko, D., & Kaxiras, E. (2015). Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications. Journal of Chemical Theory and Computation, 12(2), 466-476. doi:10.1021/acs.jctc.5b00969 | es_ES |
dc.description.references | Schaffhauser, P., & Kümmel, S. (2016). Using time-dependent density functional theory in real time for calculating electronic transport. Physical Review B, 93(3). doi:10.1103/physrevb.93.035115 | es_ES |
dc.description.references | O’Rourke, C., & Bowler, D. R. (2015). Linear scaling density matrix real time TDDFT: Propagator unitarity and matrix truncation. The Journal of Chemical Physics, 143(10), 102801. doi:10.1063/1.4919128 | es_ES |
dc.description.references | Oliveira, M. J. T., Mignolet, B., Kus, T., Papadopoulos, T. A., Remacle, F., & Verstraete, M. J. (2015). Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory. Journal of Chemical Theory and Computation, 11(5), 2221-2233. doi:10.1021/acs.jctc.5b00167 | es_ES |
dc.description.references | Zhu, Y., & Herbert, J. M. (2018). Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation. The Journal of Chemical Physics, 148(4), 044117. doi:10.1063/1.5004675 | es_ES |
dc.description.references | Rehn, D. A., Shen, Y., Buchholz, M. E., Dubey, M., Namburu, R., & Reed, E. J. (2019). ODE integration schemes for plane-wave real-time time-dependent density functional theory. The Journal of Chemical Physics, 150(1), 014101. doi:10.1063/1.5056258 | es_ES |
dc.description.references | Gómez Pueyo, A., Marques, M. A. L., Rubio, A., & Castro, A. (2018). Propagators for the Time-Dependent Kohn–Sham Equations: Multistep, Runge–Kutta, Exponential Runge–Kutta, and Commutator Free Magnus Methods. Journal of Chemical Theory and Computation, 14(6), 3040-3052. doi:10.1021/acs.jctc.8b00197 | es_ES |
dc.description.references | Stoer, J., & Bulirsch, R. (2002). Introduction to Numerical Analysis. doi:10.1007/978-0-387-21738-3 | es_ES |
dc.description.references | Blanes, S., & Casas, F. (2017). A Concise Introduction to Geometric Numerical Integration. doi:10.1201/b21563 | es_ES |
dc.description.references | Flocard, H., Koonin, S. E., & Weiss, M. S. (1978). Three-dimensional time-dependent Hartree-Fock calculations: Application toO16+O16collisions. Physical Review C, 17(5), 1682-1699. doi:10.1103/physrevc.17.1682 | es_ES |
dc.description.references | Chen, R., & Guo, H. (1999). The Chebyshev propagator for quantum systems. Computer Physics Communications, 119(1), 19-31. doi:10.1016/s0010-4655(98)00179-9 | es_ES |
dc.description.references | Hochbruck, M., & Lubich, C. (1997). On Krylov Subspace Approximations to the Matrix Exponential Operator. SIAM Journal on Numerical Analysis, 34(5), 1911-1925. doi:10.1137/s0036142995280572 | es_ES |
dc.description.references | Frapiccini, A. L., Hamido, A., Schröter, S., Pyke, D., Mota-Furtado, F., O’Mahony, P. F., … Piraux, B. (2014). Explicit schemes for time propagating many-body wave functions. Physical Review A, 89(2). doi:10.1103/physreva.89.023418 | es_ES |
dc.description.references | Caliari, M., Kandolf, P., Ostermann, A., & Rainer, S. (2016). The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential. SIAM Journal on Scientific Computing, 38(3), A1639-A1661. doi:10.1137/15m1027620 | es_ES |
dc.description.references | Schaefer, I., Tal-Ezer, H., & Kosloff, R. (2017). Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems. Journal of Computational Physics, 343, 368-413. doi:10.1016/j.jcp.2017.04.017 | es_ES |
dc.description.references | Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6 | es_ES |
dc.description.references | Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041 | es_ES |
dc.description.references | Feit, M. ., Fleck, J. ., & Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47(3), 412-433. doi:10.1016/0021-9991(82)90091-2 | es_ES |
dc.description.references | Suzuki, M. (1990). Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Physics Letters A, 146(6), 319-323. doi:10.1016/0375-9601(90)90962-n | es_ES |
dc.description.references | Suzuki, M. (1992). General theory of higher-order decomposition of exponential operators and symplectic integrators. Physics Letters A, 165(5-6), 387-395. doi:10.1016/0375-9601(92)90335-j | es_ES |
dc.description.references | Yoshida, H. (1990). Construction of higher order symplectic integrators. Physics Letters A, 150(5-7), 262-268. doi:10.1016/0375-9601(90)90092-3 | es_ES |
dc.description.references | Sugino, O., & Miyamoto, Y. (1999). Density-functional approach to electron dynamics: Stable simulation under a self-consistent field. Physical Review B, 59(4), 2579-2586. doi:10.1103/physrevb.59.2579 | es_ES |
dc.description.references | McLachlan, R. I., & Quispel, G. R. W. (2002). Splitting methods. Acta Numerica, 11, 341-434. doi:10.1017/s0962492902000053 | es_ES |
dc.description.references | Ascher, U. M., Ruuth, S. J., & Wetton, B. T. R. (1995). Implicit-Explicit Methods for Time-Dependent Partial Differential Equations. SIAM Journal on Numerical Analysis, 32(3), 797-823. doi:10.1137/0732037 | es_ES |
dc.description.references | Cooper, G. J., & Sayfy, A. (1983). Additive Runge-Kutta methods for stiff ordinary differential equations. Mathematics of Computation, 40(161), 207-218. doi:10.1090/s0025-5718-1983-0679441-1 | es_ES |
dc.description.references | Hochbruck, M., Lubich, C., & Selhofer, H. (1998). Exponential Integrators for Large Systems of Differential Equations. SIAM Journal on Scientific Computing, 19(5), 1552-1574. doi:10.1137/s1064827595295337 | es_ES |
dc.description.references | Hochbruck, M., & Ostermann, A. (2005). Exponential Runge–Kutta methods for parabolic problems. Applied Numerical Mathematics, 53(2-4), 323-339. doi:10.1016/j.apnum.2004.08.005 | es_ES |
dc.description.references | Hochbruck, M., & Ostermann, A. (2005). Explicit Exponential Runge--Kutta Methods for Semilinear Parabolic Problems. SIAM Journal on Numerical Analysis, 43(3), 1069-1090. doi:10.1137/040611434 | es_ES |
dc.description.references | Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048 | es_ES |
dc.description.references | Houston, W. V. (1940). Acceleration of Electrons in a Crystal Lattice. Physical Review, 57(3), 184-186. doi:10.1103/physrev.57.184 | es_ES |
dc.description.references | Chen, Z., & Polizzi, E. (2010). Spectral-based propagation schemes for time-dependent quantum systems with application to carbon nanotubes. Physical Review B, 82(20). doi:10.1103/physrevb.82.205410 | es_ES |
dc.description.references | Sato, S. A., & Yabana, K. (2014). Efficient basis expansion for describing linear and nonlinear electron dynamics in crystalline solids. Physical Review B, 89(22). doi:10.1103/physrevb.89.224305 | es_ES |
dc.description.references | Wang, Z., Li, S.-S., & Wang, L.-W. (2015). Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material. Physical Review Letters, 114(6). doi:10.1103/physrevlett.114.063004 | es_ES |
dc.description.references | Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404 | es_ES |
dc.description.references | Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001 | es_ES |
dc.description.references | Nettesheim, P., Bornemann, F. A., Schmidt, B., & Schütte, C. (1996). An explicit and symplectic integrator for quantum-classical molecular dynamics. Chemical Physics Letters, 256(6), 581-588. doi:10.1016/0009-2614(96)00471-x | es_ES |
dc.description.references | Hochbruck, M., & Lubich, C. (1999). A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 421-432. doi:10.1007/978-3-642-58360-5_24 | es_ES |
dc.description.references | Hochbruck, M., & Lubich, C. (1999). Bit Numerical Mathematics, 39(4), 620-645. doi:10.1023/a:1022335122807 | es_ES |
dc.description.references | Nettesheim, P., & Reich, S. (1999). Symplectic Multiple-Time-Stepping Integrators for Quantum-Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 412-420. doi:10.1007/978-3-642-58360-5_23 | es_ES |
dc.description.references | Nettesheim, P., & Schütte, C. (1999). Numerical Integrators for Quantum-Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 396-411. doi:10.1007/978-3-642-58360-5_22 | es_ES |
dc.description.references | Reich, S. (1999). Multiple Time Scales in Classical and Quantum–Classical Molecular Dynamics. Journal of Computational Physics, 151(1), 49-73. doi:10.1006/jcph.1998.6142 | es_ES |
dc.description.references | Jiang, H., & Zhao, X. S. (2000). New propagators for quantum-classical molecular dynamics simulations. The Journal of Chemical Physics, 113(3), 930-935. doi:10.1063/1.481873 | es_ES |
dc.description.references | Grochowski, P., & Lesyng, B. (2003). Extended Hellmann–Feynman forces, canonical representations, and exponential propagators in the mixed quantum-classical molecular dynamics. The Journal of Chemical Physics, 119(22), 11541-11555. doi:10.1063/1.1624062 | es_ES |
dc.description.references | Blanes, S., & Moan, P. C. (2006). Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems. Applied Numerical Mathematics, 56(12), 1519-1537. doi:10.1016/j.apnum.2005.11.004 | es_ES |
dc.description.references | Bader, P., Blanes, S., & Kopylov, N. (2018). Exponential propagators for the Schrödinger equation with a time-dependent potential. The Journal of Chemical Physics, 148(24), 244109. doi:10.1063/1.5036838 | es_ES |
dc.description.references | Marques, M. (2003). octopus: a first-principles tool for excited electron–ion dynamics. Computer Physics Communications, 151(1), 60-78. doi:10.1016/s0010-4655(02)00686-0 | es_ES |
dc.description.references | Castro, A., Appel, H., Oliveira, M., Rozzi, C. A., Andrade, X., Lorenzen, F., … Rubio, A. (2006). octopus: a tool for the application of time-dependent density functional theory. physica status solidi (b), 243(11), 2465-2488. doi:10.1002/pssb.200642067 | es_ES |
dc.description.references | Schwerdtfeger, P. (2011). The Pseudopotential Approximation in Electronic Structure Theory. ChemPhysChem, 12(17), 3143-3155. doi:10.1002/cphc.201100387 | es_ES |
dc.description.references | Alonso, J. L., Castro, A., Clemente-Gallardo, J., Cuchí, J. C., Echenique, P., & Falceto, F. (2011). Statistics and Nosé formalism for Ehrenfest dynamics. Journal of Physics A: Mathematical and Theoretical, 44(39), 395004. doi:10.1088/1751-8113/44/39/395004 | es_ES |
dc.description.references | Iserles, A., & Nørsett, S. P. (1999). On the solution of linear differential equations in Lie groups. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1754), 983-1019. doi:10.1098/rsta.1999.0362 | es_ES |
dc.description.references | Munthe–Kaas, H., & Owren, B. (1999). Computations in a free Lie algebra. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1754), 957-981. doi:10.1098/rsta.1999.0361 | es_ES |
dc.description.references | Alvermann, A., & Fehske, H. (2011). High-order commutator-free exponential time-propagation of driven quantum systems. Journal of Computational Physics, 230(15), 5930-5956. doi:10.1016/j.jcp.2011.04.006 | es_ES |
dc.description.references | Blanes, S., & Moan, P. C. (2000). Splitting methods for the time-dependent Schrödinger equation. Physics Letters A, 265(1-2), 35-42. doi:10.1016/s0375-9601(99)00866-x | es_ES |
dc.description.references | Auer, N., Einkemmer, L., Kandolf, P., & Ostermann, A. (2018). Magnus integrators on multicore CPUs and GPUs. Computer Physics Communications, 228, 115-122. doi:10.1016/j.cpc.2018.02.019 | es_ES |
dc.description.references | Thalhammer, M. (2006). A fourth-order commutator-free exponential integrator for nonautonomous differential equations. SIAM Journal on Numerical Analysis, 44(2), 851-864. doi:10.1137/05063042 | es_ES |
dc.description.references | Bader, P., Blanes, S., Ponsoda, E., & Seydaoğlu, M. (2017). Symplectic integrators for the matrix Hill equation. Journal of Computational and Applied Mathematics, 316, 47-59. doi:10.1016/j.cam.2016.09.041 | es_ES |