- -

Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez Pueyo, Adrián es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Castro, Alberto es_ES
dc.date.accessioned 2021-03-09T04:31:53Z
dc.date.available 2021-03-09T04:31:53Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 1549-9618 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163475
dc.description.abstract [EN] We consider the numerical propagation of models that combine both quantum and classical degrees of freedom, usually, electrons and nuclei, respectively. We focus, in our computational examples, on the case in which the quantum electrons are modeled with time-dependent density-functional theory, although the methods discussed below can be used with any other level of theory. Often, for these so-called quantum classical molecular dynamics models, one uses some propagation technique to deal with the quantum part and a different one for the classical equations. While the resulting procedure may, in principle, be consistent, it can however spoil some of the properties of the methods, such as the accuracy order with respect to the time step or the preservation of the geometrical structure of the equations. Few methods have been developed specifically for hybrid quantum-classical models. We propose using the same method for both the quantum and classical particles, in particular, one family of techniques that proves to be very efficient for the propagation of Schrodinger-like equations: the (quasi)-commutator free Magnus expansions. These have been developed, however, for linear systems, yet our problem is nonlinear: formally, the full quantum-classical system can be rewritten as a nonlinear Schrodinger equation, i.e., one in which the Hamiltonian depends on the system itself. The Magnus expansion algorithms for linear systems require the application of the Hamiltonian at intermediate points in a given propagating interval. For nonlinear systems, this poses a problem as this Hamiltonian is unknown due to its dependence on the state. We approximate it by employing a higher order extrapolation using previous steps as input. The resulting technique can then be regarded as a multistep technique or, alternatively, as a predictor corrector formula. es_ES
dc.description.sponsorship A.C. acknowledges support from the MINECO FIS2017-82426-P grant. S.B. acknowledges the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the program "Geometry, compatibility and structure preservation in computational differential equations (2019)", EPSRC grant number EP/R014604/1. S.B. also acknowledges funding by the Ministerio de Economia y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE) and the Ministerio de Ciencia Innovacion y Universidades, through Programa de Estancias de profesores e investigadores senior en centros extranjeros, incluido el Programa "Salvador de Madariaga" 2019 (PRX19/00295). es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Journal of Chemical Theory and Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.jctc.9b01031 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FR014604%2F1/GB/Isaac Newton Institute for Mathematical Sciences/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-82426-P/ES/OPTIMIZACION Y MODELOS MICROSCOPICOS DESDE PRIMEROS PRINCIPIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//PRX19%2F00295/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Gómez Pueyo, A.; Blanes Zamora, S.; Castro, A. (2020). Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods. Journal of Chemical Theory and Computation. 16(3):1420-1430. https://doi.org/10.1021/acs.jctc.9b01031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.jctc.9b01031 es_ES
dc.description.upvformatpinicio 1420 es_ES
dc.description.upvformatpfin 1430 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 31999460 es_ES
dc.relation.pasarela S\428761 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Isaac Newton Institute for Mathematical Sciences es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Molner, S. P. (1999). The Art of Molecular Dynamics Simulation (Rapaport, D. C.). Journal of Chemical Education, 76(2), 171. doi:10.1021/ed076p171 es_ES
dc.description.references Fermi, E.; Pasta, J.; Ulam, S. Studies of Nonlinear Problems I, Los Alamos Report LA 1940; Los Alamos Scientific Laboratory, 1955; reproduced in Nonlinear Wave Motion. Providence, RI, 1974. es_ES
dc.description.references Alder, B. J., & Wainwright, T. E. (1959). Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics, 31(2), 459-466. doi:10.1063/1.1730376 es_ES
dc.description.references Bornemann, F. A., Nettesheim, P., & Schütte, C. (1996). Quantum‐classical molecular dynamics as an approximation to full quantum dynamics. The Journal of Chemical Physics, 105(3), 1074-1083. doi:10.1063/1.471952 es_ES
dc.description.references DOLTSINIS, N. L., & MARX, D. (2002). FIRST PRINCIPLES MOLECULAR DYNAMICS INVOLVING EXCITED STATES AND NONADIABATIC TRANSITIONS. Journal of Theoretical and Computational Chemistry, 01(02), 319-349. doi:10.1142/s0219633602000257 es_ES
dc.description.references Runge, E., & Gross, E. K. U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52(12), 997-1000. doi:10.1103/physrevlett.52.997 es_ES
dc.description.references Marques, M. A. L., Maitra, N. T., Nogueira, F. M. S., Gross, E. K. U., & Rubio, A. (Eds.). (2012). Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics. doi:10.1007/978-3-642-23518-4 es_ES
dc.description.references Verlet, L. (1967). Computer «Experiments» on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(1), 98-103. doi:10.1103/physrev.159.98 es_ES
dc.description.references Hairer, E., & Wanner, G. (1996). Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics. doi:10.1007/978-3-642-05221-7 es_ES
dc.description.references Castro, A., Marques, M. A. L., & Rubio, A. (2004). Propagators for the time-dependent Kohn–Sham equations. The Journal of Chemical Physics, 121(8), 3425-3433. doi:10.1063/1.1774980 es_ES
dc.description.references Schleife, A., Draeger, E. W., Kanai, Y., & Correa, A. A. (2012). Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations. The Journal of Chemical Physics, 137(22), 22A546. doi:10.1063/1.4758792 es_ES
dc.description.references Russakoff, A., Li, Y., He, S., & Varga, K. (2016). Accuracy and computational efficiency of real-time subspace propagation schemes for the time-dependent density functional theory. The Journal of Chemical Physics, 144(20), 204125. doi:10.1063/1.4952646 es_ES
dc.description.references Kidd, D., Covington, C., & Varga, K. (2017). Exponential integrators in time-dependent density-functional calculations. Physical Review E, 96(6). doi:10.1103/physreve.96.063307 es_ES
dc.description.references Dewhurst, J. K., Krieger, K., Sharma, S., & Gross, E. K. U. (2016). An efficient algorithm for time propagation as applied to linearized augmented plane wave method. Computer Physics Communications, 209, 92-95. doi:10.1016/j.cpc.2016.09.001 es_ES
dc.description.references Akama, T., Kobayashi, O., & Nanbu, S. (2015). Development of efficient time-evolution method based on three-term recurrence relation. The Journal of Chemical Physics, 142(20), 204104. doi:10.1063/1.4921465 es_ES
dc.description.references Kolesov, G., Grånäs, O., Hoyt, R., Vinichenko, D., & Kaxiras, E. (2015). Real-Time TD-DFT with Classical Ion Dynamics: Methodology and Applications. Journal of Chemical Theory and Computation, 12(2), 466-476. doi:10.1021/acs.jctc.5b00969 es_ES
dc.description.references Schaffhauser, P., & Kümmel, S. (2016). Using time-dependent density functional theory in real time for calculating electronic transport. Physical Review B, 93(3). doi:10.1103/physrevb.93.035115 es_ES
dc.description.references O’Rourke, C., & Bowler, D. R. (2015). Linear scaling density matrix real time TDDFT: Propagator unitarity and matrix truncation. The Journal of Chemical Physics, 143(10), 102801. doi:10.1063/1.4919128 es_ES
dc.description.references Oliveira, M. J. T., Mignolet, B., Kus, T., Papadopoulos, T. A., Remacle, F., & Verstraete, M. J. (2015). Computational Benchmarking for Ultrafast Electron Dynamics: Wave Function Methods vs Density Functional Theory. Journal of Chemical Theory and Computation, 11(5), 2221-2233. doi:10.1021/acs.jctc.5b00167 es_ES
dc.description.references Zhu, Y., & Herbert, J. M. (2018). Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation. The Journal of Chemical Physics, 148(4), 044117. doi:10.1063/1.5004675 es_ES
dc.description.references Rehn, D. A., Shen, Y., Buchholz, M. E., Dubey, M., Namburu, R., & Reed, E. J. (2019). ODE integration schemes for plane-wave real-time time-dependent density functional theory. The Journal of Chemical Physics, 150(1), 014101. doi:10.1063/1.5056258 es_ES
dc.description.references Gómez Pueyo, A., Marques, M. A. L., Rubio, A., & Castro, A. (2018). Propagators for the Time-Dependent Kohn–Sham Equations: Multistep, Runge–Kutta, Exponential Runge–Kutta, and Commutator Free Magnus Methods. Journal of Chemical Theory and Computation, 14(6), 3040-3052. doi:10.1021/acs.jctc.8b00197 es_ES
dc.description.references Stoer, J., & Bulirsch, R. (2002). Introduction to Numerical Analysis. doi:10.1007/978-0-387-21738-3 es_ES
dc.description.references Blanes, S., & Casas, F. (2017). A Concise Introduction to Geometric Numerical Integration. doi:10.1201/b21563 es_ES
dc.description.references Flocard, H., Koonin, S. E., & Weiss, M. S. (1978). Three-dimensional time-dependent Hartree-Fock calculations: Application toO16+O16collisions. Physical Review C, 17(5), 1682-1699. doi:10.1103/physrevc.17.1682 es_ES
dc.description.references Chen, R., & Guo, H. (1999). The Chebyshev propagator for quantum systems. Computer Physics Communications, 119(1), 19-31. doi:10.1016/s0010-4655(98)00179-9 es_ES
dc.description.references Hochbruck, M., & Lubich, C. (1997). On Krylov Subspace Approximations to the Matrix Exponential Operator. SIAM Journal on Numerical Analysis, 34(5), 1911-1925. doi:10.1137/s0036142995280572 es_ES
dc.description.references Frapiccini, A. L., Hamido, A., Schröter, S., Pyke, D., Mota-Furtado, F., O’Mahony, P. F., … Piraux, B. (2014). Explicit schemes for time propagating many-body wave functions. Physical Review A, 89(2). doi:10.1103/physreva.89.023418 es_ES
dc.description.references Caliari, M., Kandolf, P., Ostermann, A., & Rainer, S. (2016). The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential. SIAM Journal on Scientific Computing, 38(3), A1639-A1661. doi:10.1137/15m1027620 es_ES
dc.description.references Schaefer, I., Tal-Ezer, H., & Kosloff, R. (2017). Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems. Journal of Computational Physics, 343, 368-413. doi:10.1016/j.jcp.2017.04.017 es_ES
dc.description.references Trotter, H. F. (1959). On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4), 545-545. doi:10.1090/s0002-9939-1959-0108732-6 es_ES
dc.description.references Strang, G. (1968). On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis, 5(3), 506-517. doi:10.1137/0705041 es_ES
dc.description.references Feit, M. ., Fleck, J. ., & Steiger, A. (1982). Solution of the Schrödinger equation by a spectral method. Journal of Computational Physics, 47(3), 412-433. doi:10.1016/0021-9991(82)90091-2 es_ES
dc.description.references Suzuki, M. (1990). Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Physics Letters A, 146(6), 319-323. doi:10.1016/0375-9601(90)90962-n es_ES
dc.description.references Suzuki, M. (1992). General theory of higher-order decomposition of exponential operators and symplectic integrators. Physics Letters A, 165(5-6), 387-395. doi:10.1016/0375-9601(92)90335-j es_ES
dc.description.references Yoshida, H. (1990). Construction of higher order symplectic integrators. Physics Letters A, 150(5-7), 262-268. doi:10.1016/0375-9601(90)90092-3 es_ES
dc.description.references Sugino, O., & Miyamoto, Y. (1999). Density-functional approach to electron dynamics: Stable simulation under a self-consistent field. Physical Review B, 59(4), 2579-2586. doi:10.1103/physrevb.59.2579 es_ES
dc.description.references McLachlan, R. I., & Quispel, G. R. W. (2002). Splitting methods. Acta Numerica, 11, 341-434. doi:10.1017/s0962492902000053 es_ES
dc.description.references Ascher, U. M., Ruuth, S. J., & Wetton, B. T. R. (1995). Implicit-Explicit Methods for Time-Dependent Partial Differential Equations. SIAM Journal on Numerical Analysis, 32(3), 797-823. doi:10.1137/0732037 es_ES
dc.description.references Cooper, G. J., & Sayfy, A. (1983). Additive Runge-Kutta methods for stiff ordinary differential equations. Mathematics of Computation, 40(161), 207-218. doi:10.1090/s0025-5718-1983-0679441-1 es_ES
dc.description.references Hochbruck, M., Lubich, C., & Selhofer, H. (1998). Exponential Integrators for Large Systems of Differential Equations. SIAM Journal on Scientific Computing, 19(5), 1552-1574. doi:10.1137/s1064827595295337 es_ES
dc.description.references Hochbruck, M., & Ostermann, A. (2005). Exponential Runge–Kutta methods for parabolic problems. Applied Numerical Mathematics, 53(2-4), 323-339. doi:10.1016/j.apnum.2004.08.005 es_ES
dc.description.references Hochbruck, M., & Ostermann, A. (2005). Explicit Exponential Runge--Kutta Methods for Semilinear Parabolic Problems. SIAM Journal on Numerical Analysis, 43(3), 1069-1090. doi:10.1137/040611434 es_ES
dc.description.references Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048 es_ES
dc.description.references Houston, W. V. (1940). Acceleration of Electrons in a Crystal Lattice. Physical Review, 57(3), 184-186. doi:10.1103/physrev.57.184 es_ES
dc.description.references Chen, Z., & Polizzi, E. (2010). Spectral-based propagation schemes for time-dependent quantum systems with application to carbon nanotubes. Physical Review B, 82(20). doi:10.1103/physrevb.82.205410 es_ES
dc.description.references Sato, S. A., & Yabana, K. (2014). Efficient basis expansion for describing linear and nonlinear electron dynamics in crystalline solids. Physical Review B, 89(22). doi:10.1103/physrevb.89.224305 es_ES
dc.description.references Wang, Z., Li, S.-S., & Wang, L.-W. (2015). Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material. Physical Review Letters, 114(6). doi:10.1103/physrevlett.114.063004 es_ES
dc.description.references Magnus, W. (1954). On the exponential solution of differential equations for a linear operator. Communications on Pure and Applied Mathematics, 7(4), 649-673. doi:10.1002/cpa.3160070404 es_ES
dc.description.references Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001 es_ES
dc.description.references Nettesheim, P., Bornemann, F. A., Schmidt, B., & Schütte, C. (1996). An explicit and symplectic integrator for quantum-classical molecular dynamics. Chemical Physics Letters, 256(6), 581-588. doi:10.1016/0009-2614(96)00471-x es_ES
dc.description.references Hochbruck, M., & Lubich, C. (1999). A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 421-432. doi:10.1007/978-3-642-58360-5_24 es_ES
dc.description.references Hochbruck, M., & Lubich, C. (1999). Bit Numerical Mathematics, 39(4), 620-645. doi:10.1023/a:1022335122807 es_ES
dc.description.references Nettesheim, P., & Reich, S. (1999). Symplectic Multiple-Time-Stepping Integrators for Quantum-Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 412-420. doi:10.1007/978-3-642-58360-5_23 es_ES
dc.description.references Nettesheim, P., & Schütte, C. (1999). Numerical Integrators for Quantum-Classical Molecular Dynamics. Lecture Notes in Computational Science and Engineering, 396-411. doi:10.1007/978-3-642-58360-5_22 es_ES
dc.description.references Reich, S. (1999). Multiple Time Scales in Classical and Quantum–Classical Molecular Dynamics. Journal of Computational Physics, 151(1), 49-73. doi:10.1006/jcph.1998.6142 es_ES
dc.description.references Jiang, H., & Zhao, X. S. (2000). New propagators for quantum-classical molecular dynamics simulations. The Journal of Chemical Physics, 113(3), 930-935. doi:10.1063/1.481873 es_ES
dc.description.references Grochowski, P., & Lesyng, B. (2003). Extended Hellmann–Feynman forces, canonical representations, and exponential propagators in the mixed quantum-classical molecular dynamics. The Journal of Chemical Physics, 119(22), 11541-11555. doi:10.1063/1.1624062 es_ES
dc.description.references Blanes, S., & Moan, P. C. (2006). Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems. Applied Numerical Mathematics, 56(12), 1519-1537. doi:10.1016/j.apnum.2005.11.004 es_ES
dc.description.references Bader, P., Blanes, S., & Kopylov, N. (2018). Exponential propagators for the Schrödinger equation with a time-dependent potential. The Journal of Chemical Physics, 148(24), 244109. doi:10.1063/1.5036838 es_ES
dc.description.references Marques, M. (2003). octopus: a first-principles tool for excited electron–ion dynamics. Computer Physics Communications, 151(1), 60-78. doi:10.1016/s0010-4655(02)00686-0 es_ES
dc.description.references Castro, A., Appel, H., Oliveira, M., Rozzi, C. A., Andrade, X., Lorenzen, F., … Rubio, A. (2006). octopus: a tool for the application of time-dependent density functional theory. physica status solidi (b), 243(11), 2465-2488. doi:10.1002/pssb.200642067 es_ES
dc.description.references Schwerdtfeger, P. (2011). The Pseudopotential Approximation in Electronic Structure Theory. ChemPhysChem, 12(17), 3143-3155. doi:10.1002/cphc.201100387 es_ES
dc.description.references Alonso, J. L., Castro, A., Clemente-Gallardo, J., Cuchí, J. C., Echenique, P., & Falceto, F. (2011). Statistics and Nosé formalism for Ehrenfest dynamics. Journal of Physics A: Mathematical and Theoretical, 44(39), 395004. doi:10.1088/1751-8113/44/39/395004 es_ES
dc.description.references Iserles, A., & Nørsett, S. P. (1999). On the solution of linear differential equations in Lie groups. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1754), 983-1019. doi:10.1098/rsta.1999.0362 es_ES
dc.description.references Munthe–Kaas, H., & Owren, B. (1999). Computations in a free Lie algebra. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1754), 957-981. doi:10.1098/rsta.1999.0361 es_ES
dc.description.references Alvermann, A., & Fehske, H. (2011). High-order commutator-free exponential time-propagation of driven quantum systems. Journal of Computational Physics, 230(15), 5930-5956. doi:10.1016/j.jcp.2011.04.006 es_ES
dc.description.references Blanes, S., & Moan, P. C. (2000). Splitting methods for the time-dependent Schrödinger equation. Physics Letters A, 265(1-2), 35-42. doi:10.1016/s0375-9601(99)00866-x es_ES
dc.description.references Auer, N., Einkemmer, L., Kandolf, P., & Ostermann, A. (2018). Magnus integrators on multicore CPUs and GPUs. Computer Physics Communications, 228, 115-122. doi:10.1016/j.cpc.2018.02.019 es_ES
dc.description.references Thalhammer, M. (2006). A fourth-order commutator-free exponential integrator for nonautonomous differential equations. SIAM Journal on Numerical Analysis, 44(2), 851-864. doi:10.1137/05063042 es_ES
dc.description.references Bader, P., Blanes, S., Ponsoda, E., & Seydaoğlu, M. (2017). Symplectic integrators for the matrix Hill equation. Journal of Computational and Applied Mathematics, 316, 47-59. doi:10.1016/j.cam.2016.09.041 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem