- -

Digestive tract morphology and enzyme activities of juvenile diploid and triploid Atlantic salmon (Salmo salar) fed fishmeal-based diets with or without fish protein hydrolysates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Digestive tract morphology and enzyme activities of juvenile diploid and triploid Atlantic salmon (Salmo salar) fed fishmeal-based diets with or without fish protein hydrolysates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Llorens, Silvia es_ES
dc.contributor.author Peruzzi, Stefano es_ES
dc.contributor.author Falk-Petersen, Inger-Britt es_ES
dc.contributor.author Godoy-Olmos, Sergio es_ES
dc.contributor.author Olav Ulleberg, Lars es_ES
dc.contributor.author Tomas-Vidal, A. es_ES
dc.contributor.author Puvanendran, Velmurugu es_ES
dc.contributor.author Kwame Odei, Derrick es_ES
dc.contributor.author Hagen, Ørjan es_ES
dc.contributor.author Fernandes, Jorge M. O. es_ES
dc.contributor.author Jobling, Malcom es_ES
dc.date.accessioned 2021-03-10T04:31:33Z
dc.date.available 2021-03-10T04:31:33Z
dc.date.issued 2021-01-11 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163584
dc.description.abstract [EN] Triploid, sterile Atlantic salmon (Salmo salar) could make a contribution to the development of the farming industry, but uncertainties about the performance and welfare of triploids have limited their adoption by farmers. In this study, we compared the ontogeny of digestive tract morphology and enzyme activities (pepsin, trypsin, chymotrypsin, alkaline phosphatase and aminopeptidase) of diploid and triploid Atlantic salmon. Fish were fed diets based on fishmeal (STD) or a mix of fishmeal and hydrolysed fish proteins (HFM) whilst being reared at low temperature from start-feeding to completion of the parr-smolt transformation. Fish weights for each ploidy and feed combination were used to calculate thermal growth coefficients (TGCs) that spanned this developmental period, and the data were used to examine possible relationships between enzyme activities and growth. At the end of the experiment, faeces were collected and analyzed to determine the apparent digestibility coefficients (ADCs) of the dietary amino acids (AAs). Digestive tract histo-morphology did not differ substantially between ploidies and generally reflected organ maturation and functionality. There were no consistent differences in proteolytic enzyme activities resulting from the inclusion of HFM in the diet, nor was there improved digestibility and AA bioavailability of the HFM feed in either diploid or triploid fish. The triploid salmon had lower ADCs than diploids for most essential and non-essential AAs in both diets (STD and HFM), but without there being any indication of lower intestinal protease activity in triploid fish. When trypsin-to-chymotrypsin activity and trypsin and alkaline phosphatase (ALP) ratios (T:C and T:ALP, respectively) were considered in combination with growth data (TGC) low T:C and T:ALP values coincided with times of reduced fish growth, and vice versa, suggesting that T:C and T:ALP may be used to predict recent growth history and possible growth potential. es_ES
dc.description.sponsorship This work was supported by the Norwegian Research Council, Regional Research Fund-RFF-NORD -https://www. regionaleforskningsfond.no/ -(Grant no. 248028, VP at Nofima as project coordinator) and the Norwegian College of Fishery Science, University of Tromsø, (UiT) the Arctic University of Norway. The funder provided support in the form of salary for one author [VP] but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of this and other authors are articulated in the "author contributions" section. Publication charges for the article were provided by the Open Access publication fund of UiT, the Arctic University of Norway. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Digestive tract morphology and enzyme activities of juvenile diploid and triploid Atlantic salmon (Salmo salar) fed fishmeal-based diets with or without fish protein hydrolysates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0245216 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Regional Research Fund Region Nothern Norway//248028/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal es_ES
dc.description.bibliographicCitation Martínez-Llorens, S.; Peruzzi, S.; Falk-Petersen, I.; Godoy-Olmos, S.; Olav Ulleberg, L.; Tomas-Vidal, A.; Puvanendran, V.... (2021). Digestive tract morphology and enzyme activities of juvenile diploid and triploid Atlantic salmon (Salmo salar) fed fishmeal-based diets with or without fish protein hydrolysates. PLoS ONE. 16(1):1-28. https://doi.org/10.1371/journal.pone.0245216 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0245216 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33429419 es_ES
dc.identifier.pmcid PMC7801030 es_ES
dc.relation.pasarela S\424707 es_ES
dc.contributor.funder UiT The Arctic University of Norway es_ES
dc.contributor.funder Regional Research Fund Region Nothern Norway es_ES
dc.description.references Benfey, T. J. (2015). Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study. Reviews in Aquaculture, 8(3), 264-282. doi:10.1111/raq.12092 es_ES
dc.description.references Lijalad, M., & Powell, M. D. (2009). Effects of lower jaw deformity on swimming performance and recovery from exhaustive exercise in triploid and diploid Atlantic salmon Salmo salar L. Aquaculture, 290(1-2), 145-154. doi:10.1016/j.aquaculture.2009.01.039 es_ES
dc.description.references Benfey, T. J. (1999). The Physiology and Behavior of Triploid Fishes. Reviews in Fisheries Science, 7(1), 39-67. doi:10.1080/10641269991319162 es_ES
dc.description.references Peruzzi, S., Hagen, Ø., & Jobling, M. (2014). Gut morphology of diploid and triploid Atlantic salmon (Salmo salar L.). Aquaculture International, 23(4), 1105-1108. doi:10.1007/s10499-014-9867-2 es_ES
dc.description.references Cantas, L., Fraser, T. W., Fjelldal, P. G., Mayer, I., & Sørum, H. (2011). The culturable intestinal microbiota of triploid and diploid juvenile Atlantic salmon (Salmo salar) - a comparison of composition and drug resistance. BMC Veterinary Research, 7(1), 71. doi:10.1186/1746-6148-7-71 es_ES
dc.description.references Benhaïm, D., Leblanc, C. A. L., Horri, K., Mannion, K., Galloway, M., Leeper, A., … Thorarensen, H. (2020). The effect of triploidy on the performance, gut microbiome and behaviour of juvenile Atlantic salmon (Salmo salar) raised at low temperature. Applied Animal Behaviour Science, 229, 105031. doi:10.1016/j.applanim.2020.105031 es_ES
dc.description.references Van den Ingh, T. S. G. A. M., Krogdahl, Å., Olli, J. J., Hendriks, H. G. C. J. M., & Koninkx, J. G. J. F. (1991). Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon (Salmo salar): a morphological study. Aquaculture, 94(4), 297-305. doi:10.1016/0044-8486(91)90174-6 es_ES
dc.description.references Krogdahl, Å., Bakke-McKellep, A. M., & Baeverfjord, G. (2003). Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 9(6), 361-371. doi:10.1046/j.1365-2095.2003.00264.x es_ES
dc.description.references URÁN, P. A., SCHRAMA, J. W., JAAFARI, S., BAARDSEN, G., ROMBOUT, J. H. W. M., KOPPE, W., & VERRETH, J. A. J. (2009). Variation in commercial sources of soybean meal influences the severity of enteritis in Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 15(5), 492-499. doi:10.1111/j.1365-2095.2008.00615.x es_ES
dc.description.references Moldal, T., Løkka, G., Wiik-Nielsen, J., Austbø, L., Torstensen, B. E., Rosenlund, G., … Koppang, E. O. (2014). Substitution of dietary fish oil with plant oils is associated with shortened mid intestinal folds in Atlantic salmon (Salmo salar). BMC Veterinary Research, 10(1). doi:10.1186/1746-6148-10-60 es_ES
dc.description.references Sahlmann, C., Gu, J., Kortner, T. M., Lein, I., Krogdahl, Å., & Bakke, A. M. (2015). Ontogeny of the Digestive System of Atlantic Salmon (Salmo salar L.) and Effects of Soybean Meal from Start-Feeding. PLOS ONE, 10(4), e0124179. doi:10.1371/journal.pone.0124179 es_ES
dc.description.references Clarkson, M., Migaud, H., Metochis, C., Vera, L. M., Leeming, D., Tocher, D. R., & Taylor, J. F. (2017). Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 118(1), 17-29. doi:10.1017/s0007114517001842 es_ES
dc.description.references Taylor, J. F., Waagbø, R., Diez-Padrisa, M., Campbell, P., Walton, J., Hunter, D., … Migaud, H. (2014). Adult triploid Atlantic salmon (Salmo salar) have higher dietary histidine requirements to prevent cataract development in seawater. Aquaculture Nutrition, 21(1), 18-32. doi:10.1111/anu.12130 es_ES
dc.description.references Fjelldal, P. G., Hansen, T. J., Lock, E.-J., Wargelius, A., Fraser, T. W. K., Sambraus, F., … Ørnsrud, R. (2015). Increased dietary phosphorous prevents vertebral deformities in triploid Atlantic salmon (Salmo salarL.). Aquaculture Nutrition, 22(1), 72-90. doi:10.1111/anu.12238 es_ES
dc.description.references Smedley, M. A., Migaud, H., McStay, E. L., Clarkson, M., Bozzolla, P., Campbell, P., & Taylor, J. F. (2018). Impact of dietary phosphorous in diploid and triploid Atlantic salmon (Salmo salar L.) with reference to early skeletal development in freshwater. Aquaculture, 490, 329-343. doi:10.1016/j.aquaculture.2018.02.049 es_ES
dc.description.references Smedley, M. A., Clokie, B. G. J., Migaud, H., Campbell, P., Walton, J., Hunter, D., … Taylor, J. F. (2016). Dietary phosphorous and protein supplementation enhances seawater growth and reduces severity of vertebral malformation in triploid Atlantic salmon (Salmo salar L.). Aquaculture, 451, 357-368. doi:10.1016/j.aquaculture.2015.10.001 es_ES
dc.description.references Sambraus, F., Hansen, T., Daae, B. S., Thorsen, A., Sandvik, R., Stien, L. H., … Fjelldal, P. G. (2020). Triploid Atlantic salmon Salmo salar have a higher dietary phosphorus requirement for bone mineralization during early development. Journal of Fish Biology, 97(1), 137-147. doi:10.1111/jfb.14338 es_ES
dc.description.references Taylor, J. F., Vera, L. M., De Santis, C., Lock, E.-J., Espe, M., Skjærven, K. H., … Tocher, D. R. (2019). The effect of micronutrient supplementation on growth and hepatic metabolism in diploid and triploid Atlantic salmon (Salmo salar) parr fed a low marine ingredient diet. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 227, 106-121. doi:10.1016/j.cbpb.2018.10.004 es_ES
dc.description.references Vera, L. M., Lock, E.-J., Hamre, K., Migaud, H., Leeming, D., Tocher, D. R., & Taylor, J. F. (2019). Enhanced micronutrient supplementation in low marine diets reduced vertebral malformation in diploid and triploid Atlantic salmon (Salmo salar) parr, and increased vertebral expression of bone biomarker genes in diploids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 237, 110327. doi:10.1016/j.cbpb.2019.110327 es_ES
dc.description.references Refstie, S., Olli, J. J., & Standal, H. (2004). Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture, 239(1-4), 331-349. doi:10.1016/j.aquaculture.2004.06.015 es_ES
dc.description.references Yúfera, M., Moyano, F. J., Astola, A., Pousão-Ferreira, P., & Martínez-Rodríguez, G. (2012). Acidic Digestion in a Teleost: Postprandial and Circadian Pattern of Gastric pH, Pepsin Activity, and Pepsinogen and Proton Pump mRNAs Expression. PLoS ONE, 7(3), e33687. doi:10.1371/journal.pone.0033687 es_ES
dc.description.references Sunde, J., Eiane, S. A., Rustad, A., Jensen, H. B., Opstvedt, J., Nygard, E., … Rungruangsak-Torrissen, K. (2004). Effect of fish feed processing conditions on digestive protease activities, free amino acid pools, feed conversion efficiency and growth in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 10(4), 261-277. doi:10.1111/j.1365-2095.2004.00300.x es_ES
dc.description.references Sunde, J. (2001). Fish Physiology and Biochemistry, 25(4), 335-345. doi:10.1023/a:1023233024001 es_ES
dc.description.references Santigosa, E., Sánchez, J., Médale, F., Kaushik, S., Pérez-Sánchez, J., & Gallardo, M. A. (2008). Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture, 282(1-4), 68-74. doi:10.1016/j.aquaculture.2008.06.007 es_ES
dc.description.references Engrola, S., Conceição, L. E. C., Dias, L., Pereira, R., Ribeiro, L., & Dinis, M. T. (2007). Improving weaning strategies for Senegalese sole: effects of body weight and digestive capacity. Aquaculture Research, 38(7), 696-707. doi:10.1111/j.1365-2109.2007.01701.x es_ES
dc.description.references Cahu, C., Rønnestad, I., Grangier, V., & Zambonino Infante, J. L. (2004). Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture, 238(1-4), 295-308. doi:10.1016/j.aquaculture.2004.04.013 es_ES
dc.description.references Espe, M., Sveier, H., Høgøy, I., & Lied, E. (1999). Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture, 174(1-2), 119-137. doi:10.1016/s0044-8486(98)00502-x es_ES
dc.description.references Olsen, R. L., & Toppe, J. (2017). Fish silage hydrolysates: Not only a feed nutrient, but also a useful feed additive. Trends in Food Science & Technology, 66, 93-97. doi:10.1016/j.tifs.2017.06.003 es_ES
dc.description.references Rønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Saele, Ø., & Boglione, C. (2013). Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews in Aquaculture, 5, S59-S98. doi:10.1111/raq.12010 es_ES
dc.description.references Savoie, A., Le François, N. R., Lamarre, S. G., Blier, P. U., Beaulieu, L., & Cahu, C. (2011). Dietary protein hydrolysate and trypsin inhibitor effects on digestive capacities and performances during early-stages of spotted wolffish: Suggested mechanisms. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(4), 525-530. doi:10.1016/j.cbpa.2010.12.017 es_ES
dc.description.references Blier, P. ., Lemieux, H., & Devlin, R. . (2002). Is the growth rate of fish set by digestive enzymes or metabolic capacity of the tissues? Insight from transgenic coho salmon. Aquaculture, 209(1-4), 379-384. doi:10.1016/s0044-8486(01)00807-9 es_ES
dc.description.references Kolkovski, & Tandler. (2000). The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae. Aquaculture Nutrition, 6(1), 11-15. doi:10.1046/j.1365-2095.2000.00125.x es_ES
dc.description.references Hardy RW. Fish hydrolysates: production and use in aquaculture feeds. Proceeding of the Aquaculture Feed Processing and Nutrition Workshop American Soybean Association, Singapore. 1991. pp. 109–115. es_ES
dc.description.references Siddik, M. A. B., Howieson, J., Fotedar, R., & Partridge, G. J. (2020). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430. doi:10.1111/raq.12481 es_ES
dc.description.references Peruzzi, S., Puvanendran, V., Riesen, G., Seim, R. R., Hagen, Ø., Martínez-Llorens, S., … Jobling, M. (2018). Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein. PLOS ONE, 13(3), e0194340. doi:10.1371/journal.pone.0194340 es_ES
dc.description.references Cho, C. Y. (1992). Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture, 100(1-3), 107-123. doi:10.1016/0044-8486(92)90353-m es_ES
dc.description.references Sanden, M., Berntssen, M. H. G., Krogdahl, A., Hemre, G.-I., & Bakke-McKellep, A.-M. (2005). An examination of the intestinal tract of Atlantic salmon, Salmo salar L., parr fed different varieties of soy and maize. Journal of Fish Diseases, 28(6), 317-330. doi:10.1111/j.1365-2761.2005.00618.x es_ES
dc.description.references L⊘kka, G., Austb⊘, L., Falk, K., Bjerkås, I., & Koppang, E. O. (2013). Intestinal morphology of the wild atlantic salmon (Salmo salar). Journal of Morphology, 274(8), 859-876. doi:10.1002/jmor.20142 es_ES
dc.description.references Bosch, L., Alegría, A., & Farré, R. (2006). Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B, 831(1-2), 176-183. doi:10.1016/j.jchromb.2005.12.002 es_ES
dc.description.references Márquez, L., Øverland, M., Martínez-Llorens, S., Morken, T., & Moyano, F. J. (2013). Use of a gastrointestinal model to assess potential amino acid bioavailability in diets for rainbow trout (Oncorrhynchus mykiss). Aquaculture, 384-387, 46-55. doi:10.1016/j.aquaculture.2012.12.008 es_ES
dc.description.references Verdi, L. G., Brighente, I. M. C., & Pizzolatti, M. G. (2005). Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Química Nova, 28(1), 85-94. doi:10.1590/s0100-40422005000100017 es_ES
dc.description.references Anson, M. L. (1938). THE ESTIMATION OF PEPSIN, TRYPSIN, PAPAIN, AND CATHEPSIN WITH HEMOGLOBIN. Journal of General Physiology, 22(1), 79-89. doi:10.1085/jgp.22.1.79 es_ES
dc.description.references Dı́az-López, M., Moyano-López, F. J., Alarcón-López, F. J., Garcı́a-Carreño, F. L., & Navarrete del Toro, M. A. (1998). Characterization of fish acid proteases by substrate–gel electrophoresis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 121(4), 369-377. doi:10.1016/s0305-0491(98)10123-2 es_ES
dc.description.references Erlanger, B. F., Kokowsky, N., & Cohen, W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95(2), 271-278. doi:10.1016/0003-9861(61)90145-x es_ES
dc.description.references Ribeiro, L., Moura, J., Santos, M., Colen, R., Rodrigues, V., Bandarra, N., … Dias, J. (2015). Effect of vegetable based diets on growth, intestinal morphology, activity of intestinal enzymes and haematological stress indicators in meagre (Argyrosomus regius). Aquaculture, 447, 116-128. doi:10.1016/j.aquaculture.2014.12.017 es_ES
dc.description.references Verdile, N., Pasquariello, R., Scolari, M., Scirè, G., Brevini, T. A. L., & Gandolfi, F. (2020). A Detailed Study of Rainbow Trout (Onchorhynchus mykiss) Intestine Revealed That Digestive and Absorptive Functions Are Not Linearly Distributed along Its Length. Animals, 10(4), 745. doi:10.3390/ani10040745 es_ES
dc.description.references Peruzzi, S., Jobling, M., Falk-Petersen, I.-B., Lein, I., & Puvanendran, V. (2013). Gut morphology of diploid and triploid Atlantic cod, Gadus morhua. Journal of Applied Ichthyology, 29(5), 1104-1108. doi:10.1111/jai.12210 es_ES
dc.description.references Rungruangsak-Torrissen, K., & Manoonpong, P. (2019). Neural computational model GrowthEstimate: A model for studying living resources through digestive efficiency. PLOS ONE, 14(8), e0216030. doi:10.1371/journal.pone.0216030 es_ES
dc.description.references Rungruangsak-Torrissen, K., Moss, R., Andresen, L. H., Berg, A., & Waagbø, R. (2006). Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiology and Biochemistry, 32(1), 7-23. doi:10.1007/s10695-005-0630-5 es_ES
dc.description.references Ditlecadet, D., Blier, P. U., Le François, N. R., & Dufresne, F. (2009). Digestive capacities, inbreeding and growth capacities in juvenile Arctic charrSalvelinus alpinus. Journal of Fish Biology, 75(10), 2695-2708. doi:10.1111/j.1095-8649.2009.02468.x es_ES
dc.description.references Lemieux, H., Blier, P., & Dutil, J.-D. (1999). Fish Physiology and Biochemistry, 20(4), 293-303. doi:10.1023/a:1007791019523 es_ES
dc.description.references Lazo, J. P., Mendoza, R., Holt, G. J., Aguilera, C., & Arnold, C. R. (2007). Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture, 265(1-4), 194-205. doi:10.1016/j.aquaculture.2007.01.043 es_ES
dc.description.references Rungruangsak-Torrissen, K., Carter, C. G., Sundby, A., Berg, A., & Houlihan, D. F. (1999). Fish Physiology and Biochemistry, 21(3), 223-233. doi:10.1023/a:1007804823932 es_ES
dc.description.references RUNGRUANGSAK-TORRISSEN, K. (2007). DIGESTIVE EFFICIENCY, GROWTH AND QUALITIES OF MUSCLE AND OOCYTE IN ATLANTIC SALMON (SALMO SALAR L.) FED ON DIETS WITH KRILL MEAL AS AN ALTERNATIVE PROTEIN SOURCE. Journal of Food Biochemistry, 31(4), 509-540. doi:10.1111/j.1745-4514.2007.00127.x es_ES
dc.description.references Blier, P. U., Dutil, J.-D., Lemieux, H., Bélanger, F., & Bitetera, L. (2007). Phenotypic flexibility of digestive system in Atlantic cod (Gadus morhua). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(2), 174-179. doi:10.1016/j.cbpa.2006.10.012 es_ES
dc.description.references Montoya, A., López-Olmeda, J. F., Yúfera, M., Sánchez-Muros, M. J., & Sánchez-Vázquez, F. J. (2010). Feeding time synchronises daily rhythms of behaviour and digestive physiology in gilthead seabream (Sparus aurata). Aquaculture, 306(1-4), 315-321. doi:10.1016/j.aquaculture.2010.06.023 es_ES
dc.description.references Nikolopoulou, D., Moutou, K. A., Fountoulaki, E., Venou, B., Adamidou, S., & Alexis, M. N. (2011). Patterns of gastric evacuation, digesta characteristics and pH changes along the gastrointestinal tract of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(4), 406-414. doi:10.1016/j.cbpa.2010.11.021 es_ES
dc.description.references Blank, R., Mosenthin, R., Sauer, W. C., & Huang, S. (1999). Effect of fumaric acid and dietary buffering capacity on ileal and fecal amino acid digestibilities in early-weaned pigs. Journal of Animal Science, 77(11), 2974. doi:10.2527/1999.77112974x es_ES
dc.description.references BUCKING, C., & WOOD, C. M. (2009). The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chyme in rainbow trout. Aquaculture Nutrition, 15(3), 282-296. doi:10.1111/j.1365-2095.2008.00593.x es_ES
dc.description.references Krogdahl, Å., Sundby, A., & Holm, H. (2015). Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture, 449, 27-36. doi:10.1016/j.aquaculture.2015.02.032 es_ES
dc.description.references Lallès, J. (2019). Intestinal alkaline phosphatase in the gastrointestinal tract of fish: biology, ontogeny, and environmental and nutritional modulation. Reviews in Aquaculture, 12(2), 555-581. doi:10.1111/raq.12340 es_ES
dc.description.references Chen, K. T., Malo, M. S., Beasley-Topliffe, L. K., Poelstra, K., Millan, J. L., Mostafa, G., … Hodin, R. A. (2010). A Role for Intestinal Alkaline Phosphatase in the Maintenance of Local Gut Immunity. Digestive Diseases and Sciences, 56(4), 1020-1027. doi:10.1007/s10620-010-1396-x es_ES
dc.description.references Fernández, I., Hontoria, F., Ortiz-Delgado, J. B., Kotzamanis, Y., Estévez, A., Zambonino-Infante, J. L., & Gisbert, E. (2008). Larval performance and skeletal deformities in farmed gilthead sea bream (Sparus aurata) fed with graded levels of Vitamin A enriched rotifers (Brachionus plicatilis). Aquaculture, 283(1-4), 102-115. doi:10.1016/j.aquaculture.2008.06.037 es_ES
dc.description.references Fawley, J., & Gourlay, D. M. (2016). Intestinal alkaline phosphatase: a summary of its role in clinical disease. Journal of Surgical Research, 202(1), 225-234. doi:10.1016/j.jss.2015.12.008 es_ES
dc.description.references Goldberg, R. F., Austen, W. G., Zhang, X., Munene, G., Mostafa, G., Biswas, S., … Hodin, R. A. (2008). Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proceedings of the National Academy of Sciences, 105(9), 3551-3556. doi:10.1073/pnas.0712140105 es_ES
dc.description.references KROGDAHL, NORDRUM, SØRENSEN, BRUDESETH, & RØSJØ. (1999). Effects of diet composition on apparent nutrient absorption along the intestinal tract and of subsequent fasting on mucosal disaccharidase activities and plasma nutrient concentration in Atlantic salmonSalmo salarL. Aquaculture Nutrition, 5(2), 121-133. doi:10.1046/j.1365-2095.1999.00095.x es_ES
dc.description.references Rungruangsak-Torrissen, K., & Sundby, A. (2000). Fish Physiology and Biochemistry, 22(4), 337-347. doi:10.1023/a:1007864413112 es_ES
dc.description.references Estruch, G., Collado, M. C., Monge-Ortiz, R., Tomás-Vidal, A., Jover-Cerdá, M., Peñaranda, D. S., … Martínez-Llorens, S. (2018). Long-term feeding with high plant protein based diets in gilthead seabream (Sparus aurata, L.) leads to changes in the inflammatory and immune related gene expression at intestinal level. BMC Veterinary Research, 14(1). doi:10.1186/s12917-018-1626-6 es_ES
dc.description.references Oliva-Teles, A., & Kaushik, S. J. (1990). Growth and nutrient utilization by 0 + and 1 + triploid rainbow trout, Oncorhynchus my kiss. Journal of Fish Biology, 37(1), 125-133. doi:10.1111/j.1095-8649.1990.tb05934.x es_ES
dc.description.references Swanepoel, J. C., & Goosen, N. J. (2018). Evaluation of fish protein hydrolysates in juvenile African catfish (Clarias gariepinus) diets. Aquaculture, 496, 262-269. doi:10.1016/j.aquaculture.2018.06.084 es_ES
dc.description.references Bodin, N., Delfosse, G., Nang Thu, T. T., Le Boulengé, E., Abboudi, T., Larondelle, Y., & Rollin, X. (2012). Effects of fish size and diet adaptation on growth performances and nitrogen utilization of rainbow trout (Oncorhynchus mykiss W.) juveniles given diets based on free and/or protein-bound amino acids. Aquaculture, 356-357, 105-115. doi:10.1016/j.aquaculture.2012.05.030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem