- -

Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2021-03-10T04:31:42Z
dc.date.available 2021-03-10T04:31:42Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163589
dc.description.abstract [EN] One of the strategies to control the spread of infectious diseases is based on the use of specialized applications for smartphones. These apps offer the possibility, once individuals are detected to be infected, to trace their previous contacts in order to test and detect new possibly-infected individuals. This paper evaluates the effectiveness of recently developed contact tracing smartphone applications for COVID-19 that rely on Bluetooth to detect contacts. We study how these applications work in order to model the main aspects that can affect their performance: precision, utilization, tracing speed and implementation model (centralized vs. decentralized). Then, we propose an epidemic model to evaluate their efficiency in terms of controlling future outbreaks and the effort required (e.g., individuals quarantined). Our results show that smartphone contact tracing can only be effective when combined with other mild measures that can slightly reduce the reproductive number R0 (for example, social distancing). Furthermore, we have found that a centralized model is much more effective, requiring an application utilization percentage of about 50% to control an outbreak. On the contrary, a decentralized model would require a higher utilization to be effective. es_ES
dc.description.sponsorship This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Digital epidemiology es_ES
dc.subject COVID-19 es_ES
dc.subject Mobile computing es_ES
dc.subject Opportunistic networking es_ES
dc.subject Mobile crowdsensing es_ES
dc.subject Epidemic modeling es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10207113 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Hernández-Orallo, E.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2020). Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications. Applied Sciences. 10(20):1-19. https://doi.org/10.3390/app10207113 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10207113 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 20 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\419270 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Li, R., Rivers, C., Tan, Q., Murray, M. B., Toner, E., & Lipsitch, M. (2020). The demand for inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities. doi:10.1101/2020.03.09.20033241 es_ES
dc.description.references (2020). Contact Transmission of COVID-19 in South Korea: Novel Investigation Techniques for Tracing Contacts. Osong Public Health and Research Perspectives, 11(1), 60-63. doi:10.24171/j.phrp.2020.11.1.09 es_ES
dc.description.references Eames, K. T. D., & Keeling, M. J. (2003). Contact tracing and disease control. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1533), 2565-2571. doi:10.1098/rspb.2003.2554 es_ES
dc.description.references Salathé, M. (2018). Digital epidemiology: what is it, and where is it going? Life Sciences, Society and Policy, 14(1). doi:10.1186/s40504-017-0065-7 es_ES
dc.description.references The FluPhone Studyhttps://www.fluphone.org es_ES
dc.description.references Safe Pathshttp://safepaths.mit.edu es_ES
dc.description.references Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT)https://www.pepp-pt.org es_ES
dc.description.references Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134-141. doi:10.1109/mcom.2006.248176 es_ES
dc.description.references Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867-2891. doi:10.1016/j.comnet.2006.11.028 es_ES
dc.description.references Helgason, O., Kouyoumdjieva, S. T., & Karlsson, G. (2014). Opportunistic Communication and Human Mobility. IEEE Transactions on Mobile Computing, 13(7), 1597-1610. doi:10.1109/tmc.2013.160 es_ES
dc.description.references Chancay-Garcia, L., Hernandez-Orallo, E., Manzoni, P., Calafate, C. T., & Cano, J.-C. (2018). Evaluating and Enhancing Information Dissemination in Urban Areas of Interest Using Opportunistic Networks. IEEE Access, 6, 32514-32531. doi:10.1109/access.2018.2846201 es_ES
dc.description.references Dede, J., Forster, A., Hernandez-Orallo, E., Herrera-Tapia, J., Kuladinithi, K., Kuppusamy, V., … Vatandas, Z. (2018). Simulating Opportunistic Networks: Survey and Future Directions. IEEE Communications Surveys & Tutorials, 20(2), 1547-1573. doi:10.1109/comst.2017.2782182 es_ES
dc.description.references Hernández-Orallo, E., Murillo-Arcila, M., Calafate, C. T., Cano, J. C., Conejero, J. A., & Manzoni, P. (2016). Analytical evaluation of the performance of contact-Based messaging applications. Computer Networks, 111, 45-54. doi:10.1016/j.comnet.2016.07.006 es_ES
dc.description.references Hernandez-Orallo, E., Olmos, M. D. S., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 14(6), 1162-1175. doi:10.1109/tmc.2014.2343627 es_ES
dc.description.references Hernandez-Orallo, E., Manzoni, P., Calafate, C. T., & Cano, J.-C. (2020). Evaluating How Smartphone Contact Tracing Technology Can Reduce the Spread of Infectious Diseases: The Case of COVID-19. IEEE Access, 8, 99083-99097. doi:10.1109/access.2020.2998042 es_ES
dc.description.references Christaki, E. (2015). New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence, 6(6), 558-565. doi:10.1080/21505594.2015.1040975 es_ES
dc.description.references Cecilia, J. M., Cano, J., Hernández‐Orallo, E., Calafate, C. T., & Manzoni, P. (2020). Mobile crowdsensing approaches to address the COVID‐19 pandemic in Spain. IET Smart Cities, 2(2), 58-63. doi:10.1049/iet-smc.2020.0037 es_ES
dc.description.references Hernández-Orallo, E., Borrego, C., Manzoni, P., Marquez-Barja, J. M., Cano, J. C., & Calafate, C. T. (2020). Optimising data diffusion while reducing local resources consumption in Opportunistic Mobile Crowdsensing. Pervasive and Mobile Computing, 67, 101201. doi:10.1016/j.pmcj.2020.101201 es_ES
dc.description.references Doran, D., Severin, K., Gokhale, S., & Dagnino, A. (2015). Social media enabled human sensing for smart cities. AI Communications, 29(1), 57-75. doi:10.3233/aic-150683 es_ES
dc.description.references Salathe, M., Kazandjieva, M., Lee, J. W., Levis, P., Feldman, M. W., & Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 107(51), 22020-22025. doi:10.1073/pnas.1009094108 es_ES
dc.description.references Fraser, C., Riley, S., Anderson, R. M., & Ferguson, N. M. (2004). Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Sciences, 101(16), 6146-6151. doi:10.1073/pnas.0307506101 es_ES
dc.description.references Klinkenberg, D., Fraser, C., & Heesterbeek, H. (2006). The Effectiveness of Contact Tracing in Emerging Epidemics. PLoS ONE, 1(1), e12. doi:10.1371/journal.pone.0000012 es_ES
dc.description.references Kwok, K. O., Tang, A., Wei, V. W. I., Park, W. H., Yeoh, E. K., & Riley, S. (2019). Epidemic Models of Contact Tracing: Systematic Review of Transmission Studies of Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. Computational and Structural Biotechnology Journal, 17, 186-194. doi:10.1016/j.csbj.2019.01.003 es_ES
dc.description.references Müller, J., Kretzschmar, M., & Dietz, K. (2000). Contact tracing in stochastic and deterministic epidemic models. Mathematical Biosciences, 164(1), 39-64. doi:10.1016/s0025-5564(99)00061-9 es_ES
dc.description.references Huerta, R., & Tsimring, L. S. (2002). Contact tracing and epidemics control in social networks. Physical Review E, 66(5). doi:10.1103/physreve.66.056115 es_ES
dc.description.references Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., James, L., … Murray, M. (2003). Transmission Dynamics and Control of Severe Acute Respiratory Syndrome. Science, 300(5627), 1966-1970. doi:10.1126/science.1086616 es_ES
dc.description.references Hellewell, J., Abbott, S., Gimma, A., Bosse, N. I., Jarvis, C. I., Russell, T. W., … van Zandvoort, K. (2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 8(4), e488-e496. doi:10.1016/s2214-109x(20)30074-7 es_ES
dc.description.references Farrahi, K., Emonet, R., & Cebrian, M. (2014). Epidemic Contact Tracing via Communication Traces. PLoS ONE, 9(5), e95133. doi:10.1371/journal.pone.0095133 es_ES
dc.description.references Yang, H.-X., Wang, W.-X., Lai, Y.-C., & Wang, B.-H. (2012). Traffic-driven epidemic spreading on networks of mobile agents. EPL (Europhysics Letters), 98(6), 68003. doi:10.1209/0295-5075/98/68003 es_ES
dc.description.references Anglemyer, A., Moore, T. H., Parker, L., Chambers, T., Grady, A., Chiu, K., … Bero, L. (2020). Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database of Systematic Reviews, 2020(8). doi:10.1002/14651858.cd013699 es_ES
dc.description.references Braithwaite, I., Callender, T., Bullock, M., & Aldridge, R. W. (2020). Automated and partly automated contact tracing: a systematic review to inform the control of COVID-19. The Lancet Digital Health, 2(11), e607-e621. doi:10.1016/s2589-7500(20)30184-9 es_ES
dc.description.references Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., … Fraser, C. (2020). Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science, 368(6491). doi:10.1126/science.abb6936 es_ES
dc.description.references Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., … Lepri, B. (2020). Digital proximity tracing on empirical contact networks for pandemic control. doi:10.1101/2020.05.29.20115915 es_ES
dc.description.references Kretzschmar, M. E., Rozhnova, G., Bootsma, M., van Boven, M., van de Wijgert, J., & Bonten, M. (2020). Time is of the essence: impact of delays on effectiveness of contact tracing for COVID-19, a modelling study. doi:10.1101/2020.05.09.20096289 es_ES
dc.description.references Lambert, A. (2020). A mathematically rigorous assessment of the efficiency of quarantining and contact tracing in curbing the COVID-19 epidemic. doi:10.1101/2020.05.04.20091009 es_ES
dc.description.references Sattler, F., Ma, J., Wagner, P., Neumann, D., Wenzel, M., Schäfer, R., … Wiegand, T. (2020). Risk estimation of SARS-CoV-2 transmission from bluetooth low energy measurements. npj Digital Medicine, 3(1). doi:10.1038/s41746-020-00340-0 es_ES
dc.description.references Coronavirus: How to Do Testing and Contact Tracinghttps://medium.com/@tomaspueyo es_ES
dc.description.references Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020). Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 368(6490), 489-493. doi:10.1126/science.abb3221 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem