Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015)
Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algorithm (2017). https://doi.org/10.1007/s11075-017-0361-6
Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithm 71(4), 775–796 (2016)
[+]
Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015)
Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algorithm (2017). https://doi.org/10.1007/s11075-017-0361-6
Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R., Kanwar, V.: An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithm 71(4), 775–796 (2016)
Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. (2013) (Article ID 780153, 9 pages)
Geum, Y.H., Kim, Y.I., Neta, B.: A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015)
Geum, Y.H., Kim, Y.I., Neta, B.: A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016)
Geum, Y.H., Kim, Y.I., Neta, B.: Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with dynamics be-hind their purely imaginary extraneous fixed points. J. Comput. Appl. Math. 333, 131–156 (2018)
Hueso, J.L., Martínez, E., Teruel, C.: Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015)
Jay, L.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)
Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. Assoc. Comput. Mach. 21, 643–651 (1974)
Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)
Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)
Liu, B., Zhou, X.: A new family of fourth-order methods for multiple roots of nonlinear equations. Nonlinear Anal. Model. Control 18(2), 143–152 (2013)
Neta, B.: Extension of Murakami’s high-order non-linear solver to multiple roots. Int. J. Comput. Math. 87(5), 1023–1031 (2010)
Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1960)
Petković, M.S., Neta, B., Petković, L.D., Dz̆unić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, New York (2013)
Shacham, M.: Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986)
Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)
Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)
Soleymani, F., Babajee, D.K.R.: Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)
Soleymani, F., Babajee, D.K.R., Lofti, T.: On a numerical technique for finding multiple zeros and its dynamic. Egypt. Math. Soc. 21, 346–353 (2013)
Thukral, R.: Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations. J. Math. (2013). https://doi.org/10.1155/2013/404635. (Article ID 404635, 3 pages)
Thukral, R.: A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. Numer. Math. Stoch. 6(1), 37–44 (2014)
Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)
Zafar, F., Cordero, A., Quratulain, R., Torregrosa, J.R.: Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. J. Math. Chem. (2017). https://doi.org/10.1007/s10910-017-0813-1
Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. Comput. Math. Appl. 235, 4199–4206 (2011)
Zhou, X., Chen, X., Song, Y.: Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013)
[-]