- -

A new efficient parametric family of iterative methods for solving nonlinear systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A new efficient parametric family of iterative methods for solving nonlinear systems

Show full item record

Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). A new efficient parametric family of iterative methods for solving nonlinear systems. The Journal of Difference Equations and Applications. 25(9-10):1454-1467. https://doi.org/10.1080/10236198.2019.1665653

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163984

Files in this item

Item Metadata

Title: A new efficient parametric family of iterative methods for solving nonlinear systems
Author: Chicharro, Francisco I. Cordero Barbero, Alicia Garrido-Saez, Neus Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Issued date:
Abstract:
[EN] A bi-parametric family of iterative schemes for solving nonlinear systems is presented. We prove for any value of parameters the sixth-order of convergence of any members of the class. The efficiency and computational ...[+]
Subjects: Nonlinear systems , Iterative methods , Order of convergence , Divided difference operator , Efficiency index
Copyrigths: Cerrado
Source:
The Journal of Difference Equations and Applications. (issn: 1023-6198 )
DOI: 10.1080/10236198.2019.1665653
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/10236198.2019.1665653
Project ID:
MICINN/PGC2018-095896-B-C22
GV/PROMETEO/2016/089
Thanks:
This research was partially supported by both Ministerio de Ciencia, Innovacion y Universidades and Generalitat Valenciana [grant numbers PGC2018-095896-B-C22 and PROMETEO/2016/089], respectively. The authors would like ...[+]
Type: Artículo

References

Amat, S., & Busquier, S. (2017). After notes on Chebyshev’s iterative method. Applied Mathematics and Nonlinear Sciences, 2(1), 1-12. doi:10.21042/amns.2017.1.00001

Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 337, 87-97. doi:10.1016/j.cam.2018.01.004

Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8 [+]
Amat, S., & Busquier, S. (2017). After notes on Chebyshev’s iterative method. Applied Mathematics and Nonlinear Sciences, 2(1), 1-12. doi:10.21042/amns.2017.1.00001

Amiri, A. R., Cordero, A., Darvishi, M. T., & Torregrosa, J. R. (2018). Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 337, 87-97. doi:10.1016/j.cam.2018.01.004

Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8

Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z

Cordero, A., Gómez, E., & Torregrosa, J. R. (2017). Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 1-11. doi:10.1155/2017/6457532

Cordero, A., Jordán, C., Sanabria-Codesal, E., & Torregrosa, J. R. (2018). Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of convergence p+3, p≥5. Journal of Computational and Applied Mathematics, 330, 748-758. doi:10.1016/j.cam.2017.02.032

Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). Ostrowski type methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 218(6), 2377-2385. doi:10.1016/j.amc.2011.08.011

Grosan, C., & Abraham, A. (2008). A New Approach for Solving Nonlinear Equations Systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 698-714. doi:10.1109/tsmca.2008.918599

Hueso, J. L., Martínez, E., & Teruel, C. (2015). Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 275, 412-420. doi:10.1016/j.cam.2014.06.010

Khalique, C. M., & Mhlanga, I. E. (2018). Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation. Applied Mathematics and Nonlinear Sciences, 3(1), 241-254. doi:10.21042/amns.2018.1.00018

Sharma, J. R., & Arora, H. (2013). Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo, 51(1), 193-210. doi:10.1007/s10092-013-0097-1

Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6

Wang, X., Zhang, T., Qian, W., & Teng, M. (2015). Seventh-order derivative-free iterative method for solving nonlinear systems. Numerical Algorithms, 70(3), 545-558. doi:10.1007/s11075-015-9960-2

Xiao, X. Y., & Yin, H. W. (2015). Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo, 53(3), 285-300. doi:10.1007/s10092-015-0149-9

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record