- -

Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel

Mostrar el registro completo del ítem

Gala, A.; Guerrero, M.; Guirao, B.; Domine, ME.; Serra Alfaro, JM. (2020). Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel. Energy & Fuels. 34(5):5969-5982. https://doi.org/10.1021/acs.energyfuels.0c00403

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164164

Ficheros en el ítem

Metadatos del ítem

Título: Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel
Autor: Gala, Alberto Guerrero, Marta Guirao, Beatriz Domine, Marcelo Eduardo Serra Alfaro, José Manuel
Fecha difusión:
Resumen:
[EN] The liquids resulting from pyrolysis of industrial plastic waste (IPW) and postconsumer colored and white plastic film waste (PCPW and PWPW, respectively) at the pilot scale (80 kg/h) were widely characterized by ...[+]
Palabras clave: Plastic waste , Pyrolysis , Alternative fuel , Distillation , LDPE , Transportation fuels , Post-consumer plastic waste
Derechos de uso: Reserva de todos los derechos
Fuente:
Energy & Fuels. (issn: 0887-0624 )
DOI: 10.1021/acs.energyfuels.0c00403
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.energyfuels.0c00403
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IDI-20150730/ES/3R2020+ DEL RESIDUO AL RECURSO MEDIANTE EL RECICLAJE (1%2F7)/
info:eu-repo/grantAgreement/AEI//DI-16-08700/
Descripción: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy & Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.energyfuels.0c00403.
Agradecimientos:
The authors acknowledge the financial support of the Centre for the Development of Industrial Technology (grant number IDI-20150730) and the Ministerio de Ciencia, Innovacion y Universidades (Spain) (grant number DI-16-08700).[+]
Tipo: Artículo

References

Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625-2643. doi:10.1016/j.wasman.2009.06.004

Hestin, M.; Faninger, T.; Milios, L. Increased EU Plastics Recycling Targets: Environmental, Economic and Social Impact Assessment. 2015, https://www.plasticsrecyclers.eu/sites/default/files/BIO_Deloitte_PRE_Plastics%20Recycling%20Impact_Assesment_Final%20Report.pdf.

Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368. doi:10.1016/j.rser.2017.01.142 [+]
Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625-2643. doi:10.1016/j.wasman.2009.06.004

Hestin, M.; Faninger, T.; Milios, L. Increased EU Plastics Recycling Targets: Environmental, Economic and Social Impact Assessment. 2015, https://www.plasticsrecyclers.eu/sites/default/files/BIO_Deloitte_PRE_Plastics%20Recycling%20Impact_Assesment_Final%20Report.pdf.

Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368. doi:10.1016/j.rser.2017.01.142

Park, K.-B., Jeong, Y.-S., Guzelciftci, B., & Kim, J.-S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351. doi:10.1016/j.energy.2018.10.078

Wang, C., Wang, H., Fu, J., & Liu, Y. (2015). Flotation separation of waste plastics for recycling—A review. Waste Management, 41, 28-38. doi:10.1016/j.wasman.2015.03.027

Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167-1180. doi:10.1016/j.rser.2015.04.063

Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. doi:10.1016/j.rser.2009.07.005

Brems, A., Baeyens, J., & Dewil, R. (2012). Recycling and recovery of post-consumer plastic solid waste in a European context. Thermal Science, 16(3), 669-685. doi:10.2298/tsci120111121b

Heydariaraghi, M., Ghorbanian, S., Hallajisani, A., & Salehpour, A. (2016). Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. Journal of Analytical and Applied Pyrolysis, 121, 307-317. doi:10.1016/j.jaap.2016.08.010

Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the Landfill of Waste (Text with EEA Relevance); EU, 2018. https://eur-lex.europa.eu/legal-content/es/TXT/?uri=CELEX%3A32018L0850 (accessed May 29, 2019).

Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24-58. doi:10.1016/j.wasman.2017.07.044

Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, 71, 52-61. doi:10.1016/j.wasman.2017.10.033

Lazarevic, D., Aoustin, E., Buclet, N., & Brandt, N. (2010). Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resources, Conservation and Recycling, 55(2), 246-259. doi:10.1016/j.resconrec.2010.09.014

Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421-428. doi:10.1016/j.rser.2015.10.015

Angyal, A., Miskolczi, N., & Bartha, L. (2007). Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis, 79(1-2), 409-414. doi:10.1016/j.jaap.2006.12.031

Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. doi:10.1016/j.tsep.2017.06.003

Diaz Silvarrey, L. S., & Phan, A. N. (2016). Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy, 41(37), 16352-16364. doi:10.1016/j.ijhydene.2016.05.202

Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management, 239, 395-406. doi:10.1016/j.jenvman.2019.03.067

Khoo, H. H. (2019). LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 145, 67-77. doi:10.1016/j.resconrec.2019.02.010

Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2010). The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Progress in Energy and Combustion Science, 36(1), 103-129. doi:10.1016/j.pecs.2009.09.001

Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116-136. doi:10.1016/j.wasman.2015.01.022

Sharma, B. K., Moser, B. R., Vermillion, K. E., Doll, K. M., & Rajagopalan, N. (2014). Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology, 122, 79-90. doi:10.1016/j.fuproc.2014.01.019

Kalargaris, I., Tian, G., & Gu, S. (2017). The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy, 131, 179-185. doi:10.1016/j.energy.2017.05.024

Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of Analytical and Applied Pyrolysis, 63(1), 29-41. doi:10.1016/s0165-2370(01)00139-5

Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Applied Catalysis B: Environmental, 86(1-2), 78-86. doi:10.1016/j.apcatb.2008.07.026

Uddin, M. A., Koizumi, K., Murata, K., & Sakata, Y. (1997). Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil. Polymer Degradation and Stability, 56(1), 37-44. doi:10.1016/s0141-3910(96)00191-7

Su, J., Fang, C., Yang, M., You, C., Lin, Q., Zhou, X., & Li, H. (2019). Catalytic pyrolysis of waste packaging polyethylene using AlCl3-NaCl eutectic salt as catalyst. Journal of Analytical and Applied Pyrolysis, 139, 274-281. doi:10.1016/j.jaap.2019.02.015

Zhou, Q., Zheng, L., Wang, Y.-Z., Zhao, G.-M., & Wang, B. (2004). Catalytic degradation of low-density polyethylene and polypropylene using modified ZSM-5 zeolites. Polymer Degradation and Stability, 84(3), 493-497. doi:10.1016/j.polymdegradstab.2004.01.007

Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293-303. doi:10.1016/j.jaap.2009.07.008

Sakata, Y., Uddin, M. A., & Muto, A. (1999). Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Journal of Analytical and Applied Pyrolysis, 51(1-2), 135-155. doi:10.1016/s0165-2370(99)00013-3

Williams, E. A., & Williams, P. T. (1997). The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor. Journal of Chemical Technology & Biotechnology, 70(1), 9-20. doi:10.1002/(sici)1097-4660(199709)70:1<9::aid-jctb700>3.0.co;2-e

Yan, G., Jing, X., Wen, H., & Xiang, S. (2015). Thermal Cracking of Virgin and Waste Plastics of PP and LDPE in a Semibatch Reactor under Atmospheric Pressure. Energy & Fuels, 29(4), 2289-2298. doi:10.1021/ef502919f

Miskolczi, N., Angyal, A., Bartha, L., & Valkai, I. (2009). Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7-8), 1032-1040. doi:10.1016/j.fuproc.2009.04.019

Joo, H. S., & Guin, J. A. (1998). Continuous upgrading of a plastics pyrolysis liquid to an environmentally favorable gasoline range product. Fuel Processing Technology, 57(1), 25-40. doi:10.1016/s0378-3820(98)00067-8

Das, P., & Tiwari, P. (2018). The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Management, 79, 615-624. doi:10.1016/j.wasman.2018.08.021

Fernández, E.; Guerrero, M.; Gala, A. Procedimiento para convertir residuos plásticos en productos líquidos útiles en la industria petroquímica. P2019310332020.

Corma, A., Martínez, C., & Sauvanaud, L. (2007). New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content. Catalysis Today, 127(1-4), 3-16. doi:10.1016/j.cattod.2007.03.056

Pasquini, C., de Aquino, E. V., das Virgens Reboucas, M., & Gonzaga, F. B. (2007). Robust flow–batch coulometric/biamperometric titration system: Determination of bromine index and bromine number of petrochemicals. Analytica Chimica Acta, 600(1-2), 84-89. doi:10.1016/j.aca.2006.12.039

Westerhout, R. W. J., Waanders, J., Kuipers, J. A. M., & van Swaaij, W. P. M. (1998). Recycling of Polyethene and Polypropene in a Novel Bench-Scale Rotating Cone Reactor by High-Temperature Pyrolysis. Industrial & Engineering Chemistry Research, 37(6), 2293-2300. doi:10.1021/ie970704q

Abbas-Abadi, M. S., Haghighi, M. N., & Yeganeh, H. (2012). The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. Journal of Analytical and Applied Pyrolysis, 95, 198-204. doi:10.1016/j.jaap.2012.02.007

Lee, K.-H. (2007). Pyrolysis of municipal plastic wastes separated by difference of specific gravity. Journal of Analytical and Applied Pyrolysis, 79(1-2), 362-367. doi:10.1016/j.jaap.2006.12.020

Speight, J. G. (2011). Hydrocarbons from Petroleum. Handbook of Industrial Hydrocarbon Processes, 85-126. doi:10.1016/b978-0-7506-8632-7.10003-9

Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation, 119, 239-252. doi:10.1016/j.ibiod.2016.09.017

Serrano, D. P., Escola, J. M., Briones, L., & Arroyo, M. (2017). Hydroprocessing of the LDPE thermal cracking oil into transportation fuels over Pd supported on hierarchical ZSM-5 catalyst. Fuel, 206, 190-198. doi:10.1016/j.fuel.2017.06.003

Walendziewski, J. (2002). Engine fuel derived from waste plastics by thermal treatment. Fuel, 81(4), 473-481. doi:10.1016/s0016-2361(01)00118-1

Khan, M. Z. H., Sultana, M., Al-Mamun, M. R., & Hasan, M. R. (2016). Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization. Journal of Environmental and Public Health, 2016, 1-6. doi:10.1155/2016/7869080

Spain. Real Decreto 61/2006 de 31 de enero de 2006, por el que se determinan las especificaciones de gasolinas, gasóleos, fuelóleos y gases licuados del petróleo y se regula el uso de determinados biocarburantes. BOE núm. 41. Reference: BOE-A-2006-2779, 2006. https://www.boe.es/buscar/act.php?id=BOE-A-2006-2779 (accessed July 18, 2019).

Spain. Real Decreto 1088/2010, de 3 de septiembre, por el que se modifica el Real Decreto 61/2006, de 31 de enero, en lo relativo a las especificaciones de gasolinas, gasóleos, utilización de biocarburantes y contenido en azufre de los combustibles para uso marítimo. BOE núm. 215. Reference: BOE-A-2010-13704, 2010. https://www.boe.es/buscar/doc.php?id=BOE-A-2010-13704 (accessed July 18, 2019).

Min, K., Valco, D. J., Oldani, A., Kim, K., Temme, J., Kweon, C.-B. M., & Lee, T. (2019). Autoignition of varied cetane number fuels at low temperatures. Proceedings of the Combustion Institute, 37(4), 5003-5011. doi:10.1016/j.proci.2018.05.078

Bezaire, N., Wadumesthrige, K., Simon Ng, K. Y., & Salley, S. O. (2010). Limitations of the use of cetane index for alternative compression ignition engine fuels. Fuel, 89(12), 3807-3813. doi:10.1016/j.fuel.2010.07.013

Sarkar, D. K. (2015). Fuels and Combustion. Thermal Power Plant, 91-137. doi:10.1016/b978-0-12-801575-9.00003-2

Li, Z., Liu, G., Cui, X., Sun, X., Li, S., Qian, Y., … Lu, X. (2018). Effects of the variation in diesel fuel components on the particulate matter and unregulated gaseous emissions from a common rail diesel engine. Fuel, 232, 279-289. doi:10.1016/j.fuel.2018.05.170

Mguni, L. L., Yao, Y., Liu, X., Yuan, Z., & Hildebrandt, D. (2019). Ultra-deep desulphurization of both model and commercial diesel fuels by adsorption method. Journal of Environmental Chemical Engineering, 7(2), 102957. doi:10.1016/j.jece.2019.102957

Chandra Srivastava, V. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv., 2(3), 759-783. doi:10.1039/c1ra00309g

Sørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., & Nygaard, S. D. (2011). Microbial growth studies in biodiesel blends. Bioresource Technology, 102(8), 5259-5264. doi:10.1016/j.biortech.2011.02.017

López, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2011). Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Processing Technology, 92(2), 253-260. doi:10.1016/j.fuproc.2010.05.008

Murata, K., Brebu, M., & Sakata, Y. (2009). The effect of PVC on thermal and catalytic degradation of polyethylene, polypropylene and polystyrene by a continuous flow reactor. Journal of Analytical and Applied Pyrolysis, 86(1), 33-38. doi:10.1016/j.jaap.2009.04.003

Uddin, M. A., Sakata, Y., Shiraga, Y., Muto, A., & Murata, K. (1999). Dechlorination of Chlorine Compounds in Poly(vinyl chloride) Mixed Plastics Derived Oil by Solid Sorbents. Industrial & Engineering Chemistry Research, 38(4), 1406-1410. doi:10.1021/ie980445k

Lopez-Urionabarrenechea, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2015). Upgrading of chlorinated oils coming from pyrolysis of plastic waste. Fuel Processing Technology, 137, 229-239. doi:10.1016/j.fuproc.2015.04.015

Knothe, G., & Steidley, K. R. (2005). Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity. Energy & Fuels, 19(3), 1192-1200. doi:10.1021/ef049684c

Omori, T.; Tanaka, A.; Yamada, K.; Bunne, S. In Biodiesel Deposit Formation Mechanism and Improvement of Fuel Injection Equipment (FIE), SAE International Powertrains, Fuels and Lubricants Meeting, SAE Technical Paper; SAE International, 2011.

Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T. C., Santos, I. M. G., & Souza, A. G. (2009). Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 88(4), 738-743. doi:10.1016/j.fuel.2008.10.015

Mostafa, S. S. M., & El-Gendy, N. S. (2017). Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arabian Journal of Chemistry, 10, S2040-S2050. doi:10.1016/j.arabjc.2013.07.034

Chandran, D., Ng, H. K., Lau, H. L. N., Gan, S., & Choo, Y. M. (2017). Deterioration of palm biodiesel fuel under common rail diesel engine operation. Energy, 120, 854-863. doi:10.1016/j.energy.2016.11.136

Ferris, A. M., & Rothamer, D. A. (2016). Methodology for the experimental measurement of vapor–liquid equilibrium distillation curves using a modified ASTM D86 setup. Fuel, 182, 467-479. doi:10.1016/j.fuel.2016.05.099

Aydın, H., & İlkılıç, C. (2012). Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel, 102, 605-612. doi:10.1016/j.fuel.2012.06.067

Maceiras, R., Alfonsín, V., & Morales, F. J. (2017). Recycling of waste engine oil for diesel production. Waste Management, 60, 351-356. doi:10.1016/j.wasman.2016.08.009

San José Alonso, J., López Sastre, J. A., Romero-Ávila, C., & López Romero, E. J. (2006). Combustion of rapeseed oil and diesel oil mixtures for use in the production of heat energy. Fuel Processing Technology, 87(2), 97-102. doi:10.1016/j.fuproc.2005.07.004

Aleme, H. G., Assunção, R. A., Carvalho, M. M. O., & Barbeira, P. J. S. (2012). Determination of specific gravity and kinematic viscosity of diesel using distillation curves and multivariate calibration. Fuel Processing Technology, 102, 90-95. doi:10.1016/j.fuproc.2012.04.016

Murphy, F., Devlin, G., & McDonnell, K. (2013). The Evaluation of Flash Point and Cold Filter Plugging Point with Blends of Diesel and Cyn-Diesel Pyrolysis Fuel for Automotive Engines. The Open Fuels & Energy Science Journal, 6(1), 1-8. doi:10.2174/1876973x01306010001

Rashid, U., Anwar, F., & Knothe, G. (2009). Evaluation of biodiesel obtained from cottonseed oil. Fuel Processing Technology, 90(9), 1157-1163. doi:10.1016/j.fuproc.2009.05.016

Sharma, B. K., Suarez, P. A. Z., Perez, J. M., & Erhan, S. Z. (2009). Oxidation and low temperature properties of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel. Fuel Processing Technology, 90(10), 1265-1271. doi:10.1016/j.fuproc.2009.06.011

Jeong, G.-T., Park, J.-H., Park, S.-H., & Park, D.-H. (2008). Estimating and improving cold filter plugging points by blending biodiesels with different fatty acid contents. Biotechnology and Bioprocess Engineering, 13(4), 505-510. doi:10.1007/s12257-008-0144-y

Knothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84(9), 1059-1065. doi:10.1016/j.fuel.2005.01.016

Escola, J. M., Aguado, J., Serrano, D. P., & Briones, L. (2014). Transportation fuel production by combination of LDPE thermal cracking and catalytic hydroreforming. Waste Management, 34(11), 2176-2184. doi:10.1016/j.wasman.2014.06.010

Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi:10.1016/j.pecs.2016.10.001

İçıngür, Y., & Altiparmak, D. (2003). Effect of fuel cetane number and injection pressure on a DI Diesel engine performance and emissions. Energy Conversion and Management, 44(3), 389-397. doi:10.1016/s0196-8904(02)00063-8

Faussone, G. C. (2018). Transportation fuel from plastic: Two cases of study. Waste Management, 73, 416-423. doi:10.1016/j.wasman.2017.11.027

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem