- -

Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications

Mostrar el registro completo del ítem

Bello-Jurado, E.; Margarit Benavent, VJ.; Gallego-Sánchez, EM.; Schuetze, F.; Hengst, C.; Corma Canós, A.; Moliner Marin, M. (2020). Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications. Microporous and Mesoporous Materials. 302:1-10. https://doi.org/10.1016/j.micromeso.2020.110222

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164226

Ficheros en el ítem

Metadatos del ítem

Título: Deactivation and regeneration studies on Pd-containing medium pore zeolites as passive NOx adsorbers (PNAs) in cold-start applications
Autor: Bello-Jurado, Estefanía Margarit Benavent, Vicente Juan Gallego-Sánchez, Eva María Schuetze, Frank Hengst, Christoph Corma Canós, Avelino Moliner Marin, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Two Pd-containing medium pore zeolite frameworks, MFI and MWW, have been evaluated as passive NOx adsorbers (PNAs) in automotive applications. The NOx adsorption/desorption behavior of Pd-containing standard ZSM-5 and ...[+]
Palabras clave: Medium-pore zeolites , Nitrogen oxides (NOx) , Selective catalytic reduction (SCR) , Passive NOx adsorbers (PNAs)
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Microporous and Mesoporous Materials. (issn: 1387-1811 )
DOI: 10.1016/j.micromeso.2020.110222
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.micromeso.2020.110222
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
This work has been supported by Umicore and by the Spanish Government through SEV-2016-0683 and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). E.B. acknowledges the Spanish Government-MCIU for a FPI scholarship. E.M.G. ...[+]
Tipo: Artículo

References

Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NO abatement: A review. Science of The Total Environment, 408(19), 3976-3989. doi:10.1016/j.scitotenv.2010.06.001

Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 [+]
Skalska, K., Miller, J. S., & Ledakowicz, S. (2010). Trends in NO abatement: A review. Science of The Total Environment, 408(19), 3976-3989. doi:10.1016/j.scitotenv.2010.06.001

Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011). The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102(3-4), 441-448. doi:10.1016/j.apcatb.2010.12.022

Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g

Schmeisser, V., Weibel, M., Sebastian Hernando, L., Nova, I., Tronconi, E., & Ruggeri, M. P. (2013). Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment. SAE International Journal of Commercial Vehicles, 6(1), 190-199. doi:10.4271/2013-01-1064

Zheng, Y., Kovarik, L., Engelhard, M. H., Wang, Y., Wang, Y., Gao, F., & Szanyi, J. (2017). Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry. The Journal of Physical Chemistry C, 121(29), 15793-15803. doi:10.1021/acs.jpcc.7b04312

Moliner, M., & Corma, A. (2019). From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOxadsorbers for low-temperature control of emissions from diesel engines. Reaction Chemistry & Engineering, 4(2), 223-234. doi:10.1039/c8re00193f

Gu, Y., & Epling, W. S. (2019). Passive NOx adsorber: An overview of catalyst performance and reaction chemistry. Applied Catalysis A: General, 570, 1-14. doi:10.1016/j.apcata.2018.10.036

Lee, J., Ryou, Y., Cho, S. J., Lee, H., Kim, C. H., & Kim, D. H. (2018). Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Applied Catalysis B: Environmental, 226, 71-82. doi:10.1016/j.apcatb.2017.12.031

Khivantsev, K., Jaegers, N. R., Kovarik, L., Hanson, J. C., Tao, F. (Feng), Tang, Y., … Szanyi, J. (2018). Achieving Atomic Dispersion of Highly Loaded Transition Metals in Small‐Pore Zeolite SSZ‐13: High‐Capacity and High‐Efficiency Low‐Temperature CO and Passive NO x Adsorbers. Angewandte Chemie International Edition, 57(51), 16672-16677. doi:10.1002/anie.201809343

Vu, A., Luo, J., Li, J., & Epling, W. S. (2017). Effects of CO on Pd/BEA Passive NOx Adsorbers. Catalysis Letters, 147(3), 745-750. doi:10.1007/s10562-017-1976-x

Ryou, Y., Lee, J., Kim, Y., Hwang, S., Lee, H., Kim, C. H., & Kim, D. H. (2019). Effect of reduction treatments (H2 vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application. Applied Catalysis A: General, 569, 28-34. doi:10.1016/j.apcata.2018.10.016

Ryou, Y., Lee, J., Lee, H., Kim, C. H., & Kim, D. H. (2019). Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catalysis Today, 320, 175-180. doi:10.1016/j.cattod.2017.11.030

Gu, Y., Zelinsky, R. P., Chen, Y.-R., & Epling, W. S. (2019). Investigation of an irreversible NOx storage degradation Mode on a Pd/BEA passive NOx adsorber. Applied Catalysis B: Environmental, 258, 118032. doi:10.1016/j.apcatb.2019.118032

Khivantsev, K., Jaegers, N. R., Kovarik, L., Prodinger, S., Derewinski, M. A., Wang, Y., … Szanyi, J. (2019). Palladium/Beta zeolite passive NOx adsorbers (PNA): Clarification of PNA chemistry and the effects of CO and zeolite crystallite size on PNA performance. Applied Catalysis A: General, 569, 141-148. doi:10.1016/j.apcata.2018.10.021

Ryou, Y., Lee, J., Cho, S. J., Lee, H., Kim, C. H., & Kim, D. H. (2017). Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Applied Catalysis B: Environmental, 212, 140-149. doi:10.1016/j.apcatb.2017.04.077

Wang, N., Sun, Q., Bai, R., Li, X., Guo, G., & Yu, J. (2016). In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 138(24), 7484-7487. doi:10.1021/jacs.6b03518

Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m

Liu, L., Lopez-Haro, M., Lopes, C. W., Li, C., Concepcion, P., Simonelli, L., … Corma, A. (2019). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nature Materials, 18(8), 866-873. doi:10.1038/s41563-019-0412-6

Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757

KOKOTAILO, G. T., LAWTON, S. L., OLSON, D. H., & MEIER, W. M. (1978). Structure of synthetic zeolite ZSM-5. Nature, 272(5652), 437-438. doi:10.1038/272437a0

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9

Rutkowska, M., Díaz, U., Palomares, A. E., & Chmielarz, L. (2015). Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNO x process. Applied Catalysis B: Environmental, 168-169, 531-539. doi:10.1016/j.apcatb.2015.01.016

Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822

Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e

Gallego, E. M., Paris, C., Martínez, C., Moliner, M., & Corma, A. (2018). Nanosized MCM-22 zeolite using simple non-surfactant organic growth modifiers: synthesis and catalytic applications. Chemical Communications, 54(71), 9989-9992. doi:10.1039/c8cc05356a

Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-i

Argyle, M., & Bartholomew, C. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts, 5(1), 145-269. doi:10.3390/catal5010145

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem