- -

Extending the study on the linear advection equation subject to stochastic velocity field and initial condition

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Extending the study on the linear advection equation subject to stochastic velocity field and initial condition

Show full item record

Calatayud, J.; Cortés, J.; Dorini, FA.; Jornet, M. (2020). Extending the study on the linear advection equation subject to stochastic velocity field and initial condition. Mathematics and Computers in Simulation. 172:159-174. https://doi.org/10.1016/j.matcom.2019.12.014

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164755

Files in this item

Item Metadata

Title: Extending the study on the linear advection equation subject to stochastic velocity field and initial condition
Author: Calatayud, J. Cortés, J.-C. Dorini, F. A. Jornet, M.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this paper we extend the study on the linear advection equation with independent stochastic velocity and initial condition performed in Dorini and Cunha (2011). By using both existing and novel results on the ...[+]
Subjects: Random linear advection equation , Random partial differential equation , Mean square calculus , Random chain rule , Probability density function , Monte Carlo simulation
Copyrigths: Cerrado
Source:
Mathematics and Computers in Simulation. (issn: 0378-4754 )
DOI: 10.1016/j.matcom.2019.12.014
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.matcom.2019.12.014
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Thanks:
This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM201789664-P. The co-author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y ...[+]
Type: Artículo

References

Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6

Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008

El-Wakil, S. A., Sallah, M., & El-Hanbaly, A. M. (2015). Random variable transformation for generalized stochastic radiative transfer in finite participating slab media. Physica A: Statistical Mechanics and its Applications, 435, 66-79. doi:10.1016/j.physa.2015.04.033 [+]
Cortés, J.-C., Villafuerte, L., & Burgos, C. (2017). A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterranean Journal of Mathematics, 14(1). doi:10.1007/s00009-017-0853-6

Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008

El-Wakil, S. A., Sallah, M., & El-Hanbaly, A. M. (2015). Random variable transformation for generalized stochastic radiative transfer in finite participating slab media. Physica A: Statistical Mechanics and its Applications, 435, 66-79. doi:10.1016/j.physa.2015.04.033

Hussein, A., & Selim, M. M. (2009). Solution of the stochastic transport equation of neutral particles with anisotropic scattering using RVT technique. Applied Mathematics and Computation, 213(1), 250-261. doi:10.1016/j.amc.2009.03.016

Hussein, A., & Selim, M. M. (2015). Solution of the stochastic generalized shallow-water wave equation using RVT technique. The European Physical Journal Plus, 130(12). doi:10.1140/epjp/i2015-15249-3

Jardak, M., Su, C.-H., & Karniadakis, G. E. (2002). Journal of Scientific Computing, 17(1/4), 319-338. doi:10.1023/a:1015125304044

Shvidler, M., & Karasaki, K. (2003). Transport in Porous Media, 50(3), 223-241. doi:10.1023/a:1021136708863

Shvidler, M., & Karasaki, K. (2003). Transport in Porous Media, 50(3), 243-266. doi:10.1023/a:1021129325701

Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6

Venturi, D., Tartakovsky, D. M., Tartakovsky, A. M., & Karniadakis, G. E. (2013). Exact PDF equations and closure approximations for advective-reactive transport. Journal of Computational Physics, 243, 323-343. doi:10.1016/j.jcp.2013.03.001

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record