Maher, R. C., Duboviks, V., Offer, G. J., Kishimoto, M., Brandon, N. P., & Cohen, L. F. (2013). Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells, 13(4), 455-469. doi:10.1002/fuce.201200173
Cheng, Z., Wang, J.-H., Choi, Y., Yang, L., Lin, M. C., & Liu, M. (2011). From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy & Environmental Science, 4(11), 4380. doi:10.1039/c1ee01758f
Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M., & Choi, Y. (2011). Rational SOFC material design: new advances and tools. Materials Today, 14(11), 534-546. doi:10.1016/s1369-7021(11)70279-6
[+]
Maher, R. C., Duboviks, V., Offer, G. J., Kishimoto, M., Brandon, N. P., & Cohen, L. F. (2013). Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells, 13(4), 455-469. doi:10.1002/fuce.201200173
Cheng, Z., Wang, J.-H., Choi, Y., Yang, L., Lin, M. C., & Liu, M. (2011). From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy & Environmental Science, 4(11), 4380. doi:10.1039/c1ee01758f
Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M., & Choi, Y. (2011). Rational SOFC material design: new advances and tools. Materials Today, 14(11), 534-546. doi:10.1016/s1369-7021(11)70279-6
Maher, R. C., Shearing, P. R., Brightman, E., Brett, D. J. L., Brandon, N. P., & Cohen, L. F. (2015). Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy. Advanced Science, 3(1), 1500146. doi:10.1002/advs.201500146
Laguna-Bercero, M. A., & Orera, V. M. (2011). Micro-spectroscopic study of the degradation of scandia and ceria stabilized zirconia electrolytes in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 36(20), 13051-13058. doi:10.1016/j.ijhydene.2011.07.082
Brett, D. J. L., Kucernak, A. R., Aguiar, P., Atkins, S. C., Brandon, N. P., Clague, R., … Vesovic, V. (2010). What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance. ChemPhysChem, 11(13), 2714-2731. doi:10.1002/cphc.201000487
Sheppard, N. (1982). Recent developments in the vibrational spectroscopies (infrared, Raman, electron energy loss etc.) as applied to the structural analysis of species chemisorbed on metal surfaces. Journal of Molecular Structure, 80, 163-174. doi:10.1016/0022-2860(82)87225-6
Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d
Mogensen, M. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129(1-4), 63-94. doi:10.1016/s0167-2738(99)00318-5
Balaguer, M., García-Fayos, J., Solís, C., & Serra, J. M. (2013). Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ. Chemistry of Materials, 25(24), 4986-4993. doi:10.1021/cm4034963
Degen, T., Sadki, M., Bron, E., König, U., & Nénert, G. (2014). The HighScore suite. Powder Diffraction, 29(S2), S13-S18. doi:10.1017/s0885715614000840
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558
Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i
Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551
Taniguchi, T., Watanabe, T., Sugiyama, N., Subramani, A. K., Wagata, H., Matsushita, N., & Yoshimura, M. (2009). Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry C, 113(46), 19789-19793. doi:10.1021/jp9049457
Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), 178-185. doi:10.1103/physrevb.48.178
Parayanthal, P., & Pollak, F. H. (1984). Raman Scattering in Alloy Semiconductors: «Spatial Correlation» Model. Physical Review Letters, 52(20), 1822-1825. doi:10.1103/physrevlett.52.1822
Kosacki, I., Suzuki, T., Anderson, H. U., & Colomban, P. (2002). Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics, 149(1-2), 99-105. doi:10.1016/s0167-2738(02)00104-2
McBride, J. R., Hass, K. C., Poindexter, B. D., & Weber, W. H. (1994). Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 76(4), 2435-2441. doi:10.1063/1.357593
Esther Jeyanthi, C., Siddheswaran, R., Kumar, P., Siva Shankar, V., & Rajarajan, K. (2014). Structural and spectroscopic studies of rare earths doped ceria (RELa,Sc,Yb:CeO2) nanopowders. Ceramics International, 40(6), 8599-8605. doi:10.1016/j.ceramint.2014.01.076
Shirbhate, S., Nayyar, R. N., Ojha, P. K., Yadav, A. K., & Acharya, S. (2019). Exploration of Atomic Scale Changes during Oxygen Vacancy Dissociation Mechanism in Nanostructure Co-Doped Ceria: As Electrolytes for IT-SOFC. Journal of The Electrochemical Society, 166(8), F544-F554. doi:10.1149/2.1191908jes
Artini, C. (2018). Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale. Inorganic Chemistry, 57(21), 13047-13062. doi:10.1021/acs.inorgchem.8b02131
Spanier, J. E., Robinson, R. D., Zhang, F., Chan, S.-W., & Herman, I. P. (2001). Size-dependent properties ofCeO2−ynanoparticles as studied by Raman scattering. Physical Review B, 64(24). doi:10.1103/physrevb.64.245407
Zhang, F., Chan, S.-W., Spanier, J. E., Apak, E., Jin, Q., Robinson, R. D., & Herman, I. P. (2002). Cerium oxide nanoparticles: Size-selective formation and structure analysis. Applied Physics Letters, 80(1), 127-129. doi:10.1063/1.1430502
Suzuki, T., Kosacki, I., Anderson, H. U., & Colomban, P. (2004). Electrical Conductivity and Lattice Defects in Nanocrystalline Cerium Oxide Thin Films. Journal of the American Ceramic Society, 84(9), 2007-2014. doi:10.1111/j.1151-2916.2001.tb00950.x
Dohčević-Mitrović, Z. D., Šćepanović, M. J., Grujić-Brojčin, M. U., Popović, Z. V., Bošković, S. B., Matović, B. M., … Aldinger, F. (2006). The size and strain effects on the Raman spectra of Ce1−xNdxO2−δ (0≤x≤0.25) nanopowders. Solid State Communications, 137(7), 387-390. doi:10.1016/j.ssc.2005.12.006
Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w
Balaguer, M., Solís, C., Roitsch, S., & Serra, J. M. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ+ Co 2 mol%. Dalton Trans., 43(11), 4305-4312. doi:10.1039/c3dt52167b
Acharya, S. A., Gaikwad, V. M., Sathe, V., & Kulkarni, S. K. (2014). Influence of gadolinium doping on the structure and defects of ceria under fuel cell operating temperature. Applied Physics Letters, 104(11), 113508. doi:10.1063/1.4869116
Zallen, R., & Conwell, E. M. (1979). The effect of temperature on libron frequencies in molecular crystals: Implications for TTF-TCNQ. Solid State Communications, 31(8), 557-561. doi:10.1016/0038-1098(79)90252-7
Hart, T. R., Aggarwal, R. L., & Lax, B. (1970). Temperature Dependence of Raman Scattering in Silicon. Physical Review B, 1(2), 638-642. doi:10.1103/physrevb.1.638
Lughi, V., & Clarke, D. R. (2007). Temperature dependence of the yttria-stabilized zirconia Raman spectrum. Journal of Applied Physics, 101(5), 053524. doi:10.1063/1.2697347
Long, R. Q., Huang, Y. P., & Wan, H. L. (1997). Surface Oxygen Species Over Cerium Oxide and Their Reactivities with Methane and Ethane by Means ofin situConfocal Microprobe Raman Spectroscopy. Journal of Raman Spectroscopy, 28(1), 29-32. doi:10.1002/(sici)1097-4555(199701)28:1<29::aid-jrs59>3.0.co;2-g
Pushkarev, V. V., Kovalchuk, V. I., & d’ Itri, J. L. (2004). Probing Defect Sites on the CeO2 Surface with Dioxygen. The Journal of Physical Chemistry B, 108(17), 5341-5348. doi:10.1021/jp0311254
Weber, A., & McGinnis, E. A. (1960). The Raman spectrum of gaseous oxygen. Journal of Molecular Spectroscopy, 4(1-6), 195-200. doi:10.1016/0022-2852(60)90081-3
Hornés, A., Bera, P., Fernández-García, M., Guerrero-Ruiz, A., & Martínez-Arias, A. (2012). Catalytic and redox properties of bimetallic Cu–Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition. Applied Catalysis B: Environmental, 111-112, 96-105. doi:10.1016/j.apcatb.2011.09.022
Duboviks, V., Maher, R. C., Offer, G., Cohen, L. F., & Brandon, N. P. (2013). In-Operando Raman Spectroscopy Study of Passivation Effects on Ni-CGO Electrodes in CO2 Electrolysis Conditions. ECS Transactions, 57(1), 3111-3117. doi:10.1149/05701.3111ecst
Duboviks, V., Maher, R. C., Kishimoto, M., Cohen, L. F., Brandon, N. P., & Offer, G. J. (2014). A Raman spectroscopic study of the carbon deposition mechanism on Ni/CGO electrodes during CO/CO2 electrolysis. Phys. Chem. Chem. Phys., 16(26), 13063-13068. doi:10.1039/c4cp01503g
[-]