- -

In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study

Mostrar el registro completo del ítem

Solís, C.; Balaguer Ramirez, M.; Serra Alfaro, JM. (2020). In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study. Membranes. 10(7):1-16. https://doi.org/10.3390/membranes10070148

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164964

Ficheros en el ítem

Metadatos del ítem

Título: In Situ Raman Characterization of SOFC Materials in Operational Conditions: A Doped Ceria Study
Autor: Solís, Cecilia Balaguer Ramirez, Maria Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The particular operational conditions of electrochemical cells make the simultaneous characterization of both structural and transport properties challenging. The rapidity and flexibility of the acquisition of Raman ...[+]
Palabras clave: Raman spectroscopy , Doped ceria , In-situ Raman cell
Derechos de uso: Reconocimiento (by)
Fuente:
Membranes. (eissn: 2077-0375 )
DOI: 10.3390/membranes10070148
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/membranes10070148
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/
info:eu-repo/grantAgreement/AEI//IJCI-2017-32476/
Agradecimientos:
This research was funded by the Spanish Government (IJCI-2017-34110, RTI2018-102161 and SEV-2016-0683 grants).
Tipo: Artículo

References

Maher, R. C., Duboviks, V., Offer, G. J., Kishimoto, M., Brandon, N. P., & Cohen, L. F. (2013). Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells, 13(4), 455-469. doi:10.1002/fuce.201200173

Cheng, Z., Wang, J.-H., Choi, Y., Yang, L., Lin, M. C., & Liu, M. (2011). From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy & Environmental Science, 4(11), 4380. doi:10.1039/c1ee01758f

Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M., & Choi, Y. (2011). Rational SOFC material design: new advances and tools. Materials Today, 14(11), 534-546. doi:10.1016/s1369-7021(11)70279-6 [+]
Maher, R. C., Duboviks, V., Offer, G. J., Kishimoto, M., Brandon, N. P., & Cohen, L. F. (2013). Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis. Fuel Cells, 13(4), 455-469. doi:10.1002/fuce.201200173

Cheng, Z., Wang, J.-H., Choi, Y., Yang, L., Lin, M. C., & Liu, M. (2011). From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy & Environmental Science, 4(11), 4380. doi:10.1039/c1ee01758f

Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M., & Choi, Y. (2011). Rational SOFC material design: new advances and tools. Materials Today, 14(11), 534-546. doi:10.1016/s1369-7021(11)70279-6

Maher, R. C., Shearing, P. R., Brightman, E., Brett, D. J. L., Brandon, N. P., & Cohen, L. F. (2015). Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy. Advanced Science, 3(1), 1500146. doi:10.1002/advs.201500146

Laguna-Bercero, M. A., & Orera, V. M. (2011). Micro-spectroscopic study of the degradation of scandia and ceria stabilized zirconia electrolytes in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 36(20), 13051-13058. doi:10.1016/j.ijhydene.2011.07.082

Brett, D. J. L., Kucernak, A. R., Aguiar, P., Atkins, S. C., Brandon, N. P., Clague, R., … Vesovic, V. (2010). What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance. ChemPhysChem, 11(13), 2714-2731. doi:10.1002/cphc.201000487

Sheppard, N. (1982). Recent developments in the vibrational spectroscopies (infrared, Raman, electron energy loss etc.) as applied to the structural analysis of species chemisorbed on metal surfaces. Journal of Molecular Structure, 80, 163-174. doi:10.1016/0022-2860(82)87225-6

Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d

Mogensen, M. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129(1-4), 63-94. doi:10.1016/s0167-2738(99)00318-5

Balaguer, M., García-Fayos, J., Solís, C., & Serra, J. M. (2013). Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ. Chemistry of Materials, 25(24), 4986-4993. doi:10.1021/cm4034963

Degen, T., Sadki, M., Bron, E., König, U., & Nénert, G. (2014). The HighScore suite. Powder Diffraction, 29(S2), S13-S18. doi:10.1017/s0885715614000840

Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558

Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i

Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551

Taniguchi, T., Watanabe, T., Sugiyama, N., Subramani, A. K., Wagata, H., Matsushita, N., & Yoshimura, M. (2009). Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. The Journal of Physical Chemistry C, 113(46), 19789-19793. doi:10.1021/jp9049457

Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), 178-185. doi:10.1103/physrevb.48.178

Parayanthal, P., & Pollak, F. H. (1984). Raman Scattering in Alloy Semiconductors: «Spatial Correlation» Model. Physical Review Letters, 52(20), 1822-1825. doi:10.1103/physrevlett.52.1822

Kosacki, I., Suzuki, T., Anderson, H. U., & Colomban, P. (2002). Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics, 149(1-2), 99-105. doi:10.1016/s0167-2738(02)00104-2

McBride, J. R., Hass, K. C., Poindexter, B. D., & Weber, W. H. (1994). Raman and x‐ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 76(4), 2435-2441. doi:10.1063/1.357593

Esther Jeyanthi, C., Siddheswaran, R., Kumar, P., Siva Shankar, V., & Rajarajan, K. (2014). Structural and spectroscopic studies of rare earths doped ceria (RELa,Sc,Yb:CeO2) nanopowders. Ceramics International, 40(6), 8599-8605. doi:10.1016/j.ceramint.2014.01.076

Shirbhate, S., Nayyar, R. N., Ojha, P. K., Yadav, A. K., & Acharya, S. (2019). Exploration of Atomic Scale Changes during Oxygen Vacancy Dissociation Mechanism in Nanostructure Co-Doped Ceria: As Electrolytes for IT-SOFC. Journal of The Electrochemical Society, 166(8), F544-F554. doi:10.1149/2.1191908jes

Artini, C. (2018). Rare-Earth-Doped Ceria Systems and Their Performance as Solid Electrolytes: A Puzzling Tangle of Structural Issues at the Average and Local Scale. Inorganic Chemistry, 57(21), 13047-13062. doi:10.1021/acs.inorgchem.8b02131

Spanier, J. E., Robinson, R. D., Zhang, F., Chan, S.-W., & Herman, I. P. (2001). Size-dependent properties ofCeO2−ynanoparticles as studied by Raman scattering. Physical Review B, 64(24). doi:10.1103/physrevb.64.245407

Zhang, F., Chan, S.-W., Spanier, J. E., Apak, E., Jin, Q., Robinson, R. D., & Herman, I. P. (2002). Cerium oxide nanoparticles: Size-selective formation and structure analysis. Applied Physics Letters, 80(1), 127-129. doi:10.1063/1.1430502

Suzuki, T., Kosacki, I., Anderson, H. U., & Colomban, P. (2004). Electrical Conductivity and Lattice Defects in Nanocrystalline Cerium Oxide Thin Films. Journal of the American Ceramic Society, 84(9), 2007-2014. doi:10.1111/j.1151-2916.2001.tb00950.x

Dohčević-Mitrović, Z. D., Šćepanović, M. J., Grujić-Brojčin, M. U., Popović, Z. V., Bošković, S. B., Matović, B. M., … Aldinger, F. (2006). The size and strain effects on the Raman spectra of Ce1−xNdxO2−δ (0≤x≤0.25) nanopowders. Solid State Communications, 137(7), 387-390. doi:10.1016/j.ssc.2005.12.006

Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w

Balaguer, M., Solís, C., Roitsch, S., & Serra, J. M. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ+ Co 2 mol%. Dalton Trans., 43(11), 4305-4312. doi:10.1039/c3dt52167b

Acharya, S. A., Gaikwad, V. M., Sathe, V., & Kulkarni, S. K. (2014). Influence of gadolinium doping on the structure and defects of ceria under fuel cell operating temperature. Applied Physics Letters, 104(11), 113508. doi:10.1063/1.4869116

Zallen, R., & Conwell, E. M. (1979). The effect of temperature on libron frequencies in molecular crystals: Implications for TTF-TCNQ. Solid State Communications, 31(8), 557-561. doi:10.1016/0038-1098(79)90252-7

Hart, T. R., Aggarwal, R. L., & Lax, B. (1970). Temperature Dependence of Raman Scattering in Silicon. Physical Review B, 1(2), 638-642. doi:10.1103/physrevb.1.638

Lughi, V., & Clarke, D. R. (2007). Temperature dependence of the yttria-stabilized zirconia Raman spectrum. Journal of Applied Physics, 101(5), 053524. doi:10.1063/1.2697347

Long, R. Q., Huang, Y. P., & Wan, H. L. (1997). Surface Oxygen Species Over Cerium Oxide and Their Reactivities with Methane and Ethane by Means ofin situConfocal Microprobe Raman Spectroscopy. Journal of Raman Spectroscopy, 28(1), 29-32. doi:10.1002/(sici)1097-4555(199701)28:1<29::aid-jrs59>3.0.co;2-g

Pushkarev, V. V., Kovalchuk, V. I., & d’ Itri, J. L. (2004). Probing Defect Sites on the CeO2 Surface with Dioxygen. The Journal of Physical Chemistry B, 108(17), 5341-5348. doi:10.1021/jp0311254

Weber, A., & McGinnis, E. A. (1960). The Raman spectrum of gaseous oxygen. Journal of Molecular Spectroscopy, 4(1-6), 195-200. doi:10.1016/0022-2852(60)90081-3

Hornés, A., Bera, P., Fernández-García, M., Guerrero-Ruiz, A., & Martínez-Arias, A. (2012). Catalytic and redox properties of bimetallic Cu–Ni systems combined with CeO2 or Gd-doped CeO2 for methane oxidation and decomposition. Applied Catalysis B: Environmental, 111-112, 96-105. doi:10.1016/j.apcatb.2011.09.022

Duboviks, V., Maher, R. C., Offer, G., Cohen, L. F., & Brandon, N. P. (2013). In-Operando Raman Spectroscopy Study of Passivation Effects on Ni-CGO Electrodes in CO2 Electrolysis Conditions. ECS Transactions, 57(1), 3111-3117. doi:10.1149/05701.3111ecst

Duboviks, V., Maher, R. C., Kishimoto, M., Cohen, L. F., Brandon, N. P., & Offer, G. J. (2014). A Raman spectroscopic study of the carbon deposition mechanism on Ni/CGO electrodes during CO/CO2 electrolysis. Phys. Chem. Chem. Phys., 16(26), 13063-13068. doi:10.1039/c4cp01503g

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem