- -

On soft quasi-pseudometric spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On soft quasi-pseudometric spaces

Mostrar el registro completo del ítem

Sabao, H.; Otafudu, OO. (2021). On soft quasi-pseudometric spaces. Applied General Topology. 22(1):17-30. https://doi.org/10.4995/agt.2021.13084

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165236

Ficheros en el ítem

Metadatos del ítem

Título: On soft quasi-pseudometric spaces
Autor: Sabao, Hope Otafudu, Olivier Olela
Fecha difusión:
Resumen:
[EN] In this article, we introduce the concept of a soft quasi-pseudometric space. We show that every soft quasi-pseudometric induces a compatible quasi-pseudometric on the collection of all soft points of the absolute ...[+]
Palabras clave: Soft-metric , Soft-quasi-pseudometric , Soft Isbell convexity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.13084
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.13084
Agradecimientos:
The authors would like to thank the anonymous referee for the suggestions that have improved the presentation of this paper.
Tipo: Artículo

References

H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007), 2226-2735. https://doi.org/10.1016/j.ins.2006.12.008

A. Aygünoglu and H. Aygün, Some notes on soft topological spaces, Neural. Comput. Appl. 21 (2012), 113-119. https://doi.org/10.1007/s00521-011-0722-3

N. Aronszajn and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. https://doi.org/10.2140/pjm.1956.6.405 [+]
H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007), 2226-2735. https://doi.org/10.1016/j.ins.2006.12.008

A. Aygünoglu and H. Aygün, Some notes on soft topological spaces, Neural. Comput. Appl. 21 (2012), 113-119. https://doi.org/10.1007/s00521-011-0722-3

N. Aronszajn and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. https://doi.org/10.2140/pjm.1956.6.405

M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009), 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009

M. Abbas, G. Murtaza and S. Romaguera, On the fixed point theory of soft metric spaces. Fixed Point Theory Appl. 2016, 17 (2016). https://doi.org/10.1186/s13663-016-0502-y

A. Dress, V. Moulton and M. Steel, Trees, taxonomy and strongly compatible multi-state characters, Adv. Appl. Math. 71 (1997), 1-30. https://doi.org/10.1006/aama.1996.0503

P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces. Marcel Dekker, New York (1982).

D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5

J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helvetici 39 (1964), 439-447. https://doi.org/10.1007/BF02566944

H.-P. A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: Handbook of the History of General Topology (eds. C.E. Aull and R. Lowen), vol. 3, Kluwer (Dordrecht, 2001), pp. 853-968. https://doi.org/10.1007/978-94-017-0470-0_3

H.-P. A Künzi and O. Olela Otafudu, q-Hyperconvexity in quasi-pseudometric spaces and fixed point theorems, J. Func. Spaces Appl. 2012 (2012), 765903. https://doi.org/10.1155/2012/765903

E. Kemajou, H.-P. A Künzi and O. Olela Otafudu, The Isbell-hull of a di-space. Topology Appl. 159 (2012), 2463-2475. https://doi.org/10.1016/j.topol.2011.02.016

O. Olela Otafudu, Convexity in quasi-metric spaces, PhD thesis, University of Cape Town (2012).

O. Olela Otafudu and H. Sabao, Set-valued contractions and q-hyperconvex spaces, J. Nonlinear Convex Anal. 18 (2017), 1609-1617. https://doi.org/10.4995/agt.2017.5818

S. Das and S. K. Samanta, Soft real sets, soft real numbers and their properties, J. Fuzzy Math. 20 (2012), 551-576.

S. Das and S. K. Samanta, Soft metric, Ann Fuzzy Math. Inform. 6 (2013), 77-94.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem