- -

Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Epp, Konstantin es_ES
dc.contributor.author Luz, Ignacio es_ES
dc.contributor.author Heinz, Werner R. es_ES
dc.contributor.author Rapeyko, Anastasia es_ES
dc.contributor.author Llabrés i Xamena, Francesc Xavier es_ES
dc.contributor.author Fischer, Roland A. es_ES
dc.date.accessioned 2021-04-17T03:33:09Z
dc.date.available 2021-04-17T03:33:09Z
dc.date.issued 2020-03-19 es_ES
dc.identifier.issn 1867-3880 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165293
dc.description.abstract [EN] Ruthenium MOF [Ru-3(BTC)(2)Y-y] . G(g) (BTC=benzene-1,3,5-tricarboxylate; Y=counter ions=Cl-, OH-, OAc-; G=guest molecules=HOAc, H2O) is modified via a mixed-linker approach, using mixtures of BTC and pyridine-3,5-dicarboxylate (PYDC) linkers, triggering structural defects at the distinct Ru-2 paddlewheel (PW) nodes. This defect-engineering leads to enhanced catalytic properties due to the formation of partially reduced Ru-2-nodes. Application of a hydrogen pre-treatment protocol to the Ru-MOFs, leads to a further boost in catalytic activity. We study the benefits of (1) defect engineering and (2) hydrogen pre-treatment on the catalytic activity of Ru-MOFs in the Meerwein-Ponndorf-Verley reaction and the isomerization of allylic alcohols to saturated ketones. Simple solvent washing could not avoid catalyst deactivation during recycling for the latter reaction, while hydrogen treatment prior to each catalytic run proved to facilitate materials recyclability with constant activity over five runs. es_ES
dc.description.sponsorship Funding by the Spanish Government is acknowledged through projects MAT2017-82288-C2-1-P and Severo Ochoa (SEV-2016-0683). This project is further funded by the Deutsche Forschungsgemeinschaft grant no. FI-502/32-1 ("DEMOFs"). KE and WRH would like to thank TUM Graduate School and the Gesellschaft Deutscher Chemiker (GDCh) for financial support. KE gratefully acknowledges support from the colleagues Olesia Halbherr (nee Kozachuk) and Wenhua Zhang. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Metal-Organic Frameworks es_ES
dc.subject Defects es_ES
dc.subject Ruthenium es_ES
dc.subject Ru-BTC es_ES
dc.subject Ru-MOF es_ES
dc.subject HKUST-1 es_ES
dc.subject Defect-Engineering es_ES
dc.subject MOF catalysis es_ES
dc.subject DEMOF es_ES
dc.title Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cctc.201902079 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//FI-502%2F32-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Epp, K.; Luz, I.; Heinz, WR.; Rapeyko, A.; Llabrés I Xamena, FX.; Fischer, RA. (2020). Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts. ChemCatChem. 12(6):1720-1725. https://doi.org/10.1002/cctc.201902079 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cctc.201902079 es_ES
dc.description.upvformatpinicio 1720 es_ES
dc.description.upvformatpfin 1725 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\409743 es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Gesellschaft Deutscher Chemiker es_ES
dc.contributor.funder Technische Universität München es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k es_ES
dc.description.references Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y es_ES
dc.description.references Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p es_ES
dc.description.references Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u es_ES
dc.description.references Zheng, J., Ye, J., Ortuño, M. A., Fulton, J. L., Gutiérrez, O. Y., Camaioni, D. M., … Lercher, J. A. (2019). Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 141(23), 9292-9304. doi:10.1021/jacs.9b02902 es_ES
dc.description.references Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Valvekens, P., Vermoortele, F., & De Vos, D. (2013). Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science & Technology, 3(6), 1435. doi:10.1039/c3cy20813c es_ES
dc.description.references Doonan, C. J., & Sumby, C. J. (2017). Metal–organic framework catalysis. CrystEngComm, 19(29), 4044-4048. doi:10.1039/c7ce90106b es_ES
dc.description.references Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h es_ES
dc.description.references Wang, Y., & Wöll, C. (2018). Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 148(8), 2201-2222. doi:10.1007/s10562-018-2432-2 es_ES
dc.description.references Genna, D. T., Pfund, L. Y., Samblanet, D. C., Wong-Foy, A. G., Matzger, A. J., & Sanford, M. S. (2016). Rhodium Hydrogenation Catalysts Supported in Metal Organic Frameworks: Influence of the Framework on Catalytic Activity and Selectivity. ACS Catalysis, 6(6), 3569-3574. doi:10.1021/acscatal.6b00404 es_ES
dc.description.references Chen, H., He, Y., Pfefferle, L. D., Pu, W., Wu, Y., & Qi, S. (2018). Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal-Organic Frameworks in the Aqueous Phase. ChemCatChem, 10(12), 2558-2570. doi:10.1002/cctc.201800211 es_ES
dc.description.references Marx, S., Kleist, W., Huang, J., Maciejewski, M., & Baiker, A. (2010). Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). Dalton Transactions, 39(16), 3795. doi:10.1039/c002483j es_ES
dc.description.references Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540 es_ES
dc.description.references Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G., & Fischer, R. A. (2018). Defective Metal-Organic Frameworks. Advanced Materials, 30(37), 1704501. doi:10.1002/adma.201704501 es_ES
dc.description.references Zhang, Y.-B., Furukawa, H., Ko, N., Nie, W., Park, H. J., Okajima, S., … Yaghi, O. M. (2015). Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 137(7), 2641-2650. doi:10.1021/ja512311a es_ES
dc.description.references Drache, F., Cirujano, F. G., Nguyen, K. D., Bon, V., Senkovska, I., Llabrés i Xamena, F. X., & Kaskel, S. (2018). Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal–Organic Framework DUT-67. Crystal Growth & Design, 18(9), 5492-5500. doi:10.1021/acs.cgd.8b00832 es_ES
dc.description.references Zhang, W., Kauer, M., Halbherr, O., Epp, K., Guo, P., Gonzalez, M. I., … Fischer, R. A. (2016). Ruthenium Metal-Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 22(40), 14297-14307. doi:10.1002/chem.201602641 es_ES
dc.description.references Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107h es_ES
dc.description.references Kozachuk, O., Luz, I., Llabrés i Xamena, F. X., Noei, H., Kauer, M., Albada, H. B., … Fischer, R. A. (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition, 53(27), 7058-7062. doi:10.1002/anie.201311128 es_ES
dc.description.references Agirrezabal-Telleria, I., Luz, I., Ortuño, M. A., Oregui-Bengoechea, M., Gandarias, I., López, N., … Soukri, M. (2019). Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-10013-6 es_ES
dc.description.references Zhang, W., Kozachuk, O., Medishetty, R., Schneemann, A., Wagner, R., Khaletskaya, K., … Fischer, R. A. (2015). Controlled SBU Approaches to Isoreticular Metal-Organic Framework Ruthenium-Analogues of HKUST-1. European Journal of Inorganic Chemistry, 2015(23), 3913-3920. doi:10.1002/ejic.201500478 es_ES
dc.description.references Heinz, W. R., Kratky, T., Drees, M., Wimmer, A., Tomanec, O., Günther, S., … Fischer, R. A. (2019). Mixed precious-group metal–organic frameworks: a case study of the HKUST-1 analogue [RuxRh3−x(BTC)2]. Dalton Transactions, 48(32), 12031-12039. doi:10.1039/c9dt01198f es_ES
dc.description.references Bäckvall, J.-E. (2002). Transition metal hydrides as active intermediates in hydrogen transfer reactions. Journal of Organometallic Chemistry, 652(1-2), 105-111. doi:10.1016/s0022-328x(02)01316-5 es_ES
dc.description.references Chowdhury, R. L., & Bäckvall, J.-E. (1991). Efficient ruthenium-catalysed transfer hydrogenation of ketones by propan-2-ol. J. Chem. Soc., Chem. Commun., 0(16), 1063-1064. doi:10.1039/c39910001063 es_ES
dc.description.references Ahlsten, N., Bartoszewicz, A., & Martín-Matute, B. (2012). Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes. Dalton Transactions, 41(6), 1660. doi:10.1039/c1dt11678a es_ES
dc.description.references Ahlsten, N., Lundberg, H., & Martín-Matute, B. (2010). Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature. Green Chemistry, 12(9), 1628. doi:10.1039/c004964f es_ES
dc.description.references Cahard, D., Gaillard, S., & Renaud, J.-L. (2015). Asymmetric isomerization of allylic alcohols. Tetrahedron Letters, 56(45), 6159-6169. doi:10.1016/j.tetlet.2015.09.098 es_ES
dc.description.references Xia, T., Wei, Z., Spiegelberg, B., Jiao, H., Hinze, S., & de Vries, J. G. (2018). Isomerization of Allylic Alcohols to Ketones Catalyzed by Well-Defined Iron PNP Pincer Catalysts. Chemistry - A European Journal, 24(16), 4043-4049. doi:10.1002/chem.201705454 es_ES
dc.description.references Scalambra, F., Lorenzo-Luis, P., de los Rios, I., & Romerosa, A. (2019). Isomerization of allylic alcohols in water catalyzed by transition metal complexes. Coordination Chemistry Reviews, 393, 118-148. doi:10.1016/j.ccr.2019.04.012 es_ES
dc.description.references Yamaguchi, K., Koike, T., Kotani, M., Matsushita, M., Shinachi, S., & Mizuno, N. (2005). Synthetic Scope and Mechanistic Studies of Ru(OH)x/Al2O3-Catalyzed Heterogeneous Hydrogen-Transfer Reactions. Chemistry - A European Journal, 11(22), 6574-6582. doi:10.1002/chem.200500539 es_ES
dc.description.references Mitchell, R. W., Spencer, A., & Wilkinson, G. (1973). Carboxylato-triphenylphosphine complexes of ruthenium, cationic triphenylphosphine complexes derived from them, and their behaviour as homogeneous hydrogenation catalysts for alkenes. Journal of the Chemical Society, Dalton Transactions, (8), 846. doi:10.1039/dt9730000846 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem