Mostrar el registro sencillo del ítem
dc.contributor.author | Epp, Konstantin | es_ES |
dc.contributor.author | Luz, Ignacio | es_ES |
dc.contributor.author | Heinz, Werner R. | es_ES |
dc.contributor.author | Rapeyko, Anastasia | es_ES |
dc.contributor.author | Llabrés i Xamena, Francesc Xavier | es_ES |
dc.contributor.author | Fischer, Roland A. | es_ES |
dc.date.accessioned | 2021-04-17T03:33:09Z | |
dc.date.available | 2021-04-17T03:33:09Z | |
dc.date.issued | 2020-03-19 | es_ES |
dc.identifier.issn | 1867-3880 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165293 | |
dc.description.abstract | [EN] Ruthenium MOF [Ru-3(BTC)(2)Y-y] . G(g) (BTC=benzene-1,3,5-tricarboxylate; Y=counter ions=Cl-, OH-, OAc-; G=guest molecules=HOAc, H2O) is modified via a mixed-linker approach, using mixtures of BTC and pyridine-3,5-dicarboxylate (PYDC) linkers, triggering structural defects at the distinct Ru-2 paddlewheel (PW) nodes. This defect-engineering leads to enhanced catalytic properties due to the formation of partially reduced Ru-2-nodes. Application of a hydrogen pre-treatment protocol to the Ru-MOFs, leads to a further boost in catalytic activity. We study the benefits of (1) defect engineering and (2) hydrogen pre-treatment on the catalytic activity of Ru-MOFs in the Meerwein-Ponndorf-Verley reaction and the isomerization of allylic alcohols to saturated ketones. Simple solvent washing could not avoid catalyst deactivation during recycling for the latter reaction, while hydrogen treatment prior to each catalytic run proved to facilitate materials recyclability with constant activity over five runs. | es_ES |
dc.description.sponsorship | Funding by the Spanish Government is acknowledged through projects MAT2017-82288-C2-1-P and Severo Ochoa (SEV-2016-0683). This project is further funded by the Deutsche Forschungsgemeinschaft grant no. FI-502/32-1 ("DEMOFs"). KE and WRH would like to thank TUM Graduate School and the Gesellschaft Deutscher Chemiker (GDCh) for financial support. KE gratefully acknowledges support from the colleagues Olesia Halbherr (nee Kozachuk) and Wenhua Zhang. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Metal-Organic Frameworks | es_ES |
dc.subject | Defects | es_ES |
dc.subject | Ruthenium | es_ES |
dc.subject | Ru-BTC | es_ES |
dc.subject | Ru-MOF | es_ES |
dc.subject | HKUST-1 | es_ES |
dc.subject | Defect-Engineering | es_ES |
dc.subject | MOF catalysis | es_ES |
dc.subject | DEMOF | es_ES |
dc.title | Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cctc.201902079 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//FI-502%2F32-1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Epp, K.; Luz, I.; Heinz, WR.; Rapeyko, A.; Llabrés I Xamena, FX.; Fischer, RA. (2020). Defect-Engineered Ruthenium MOFs as Versatile Heterogeneous Hydrogenation Catalysts. ChemCatChem. 12(6):1720-1725. https://doi.org/10.1002/cctc.201902079 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cctc.201902079 | es_ES |
dc.description.upvformatpinicio | 1720 | es_ES |
dc.description.upvformatpfin | 1725 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\409743 | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | Gesellschaft Deutscher Chemiker | es_ES |
dc.contributor.funder | Technische Universität München | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k | es_ES |
dc.description.references | Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y | es_ES |
dc.description.references | Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p | es_ES |
dc.description.references | Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u | es_ES |
dc.description.references | Zheng, J., Ye, J., Ortuño, M. A., Fulton, J. L., Gutiérrez, O. Y., Camaioni, D. M., … Lercher, J. A. (2019). Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 141(23), 9292-9304. doi:10.1021/jacs.9b02902 | es_ES |
dc.description.references | Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Valvekens, P., Vermoortele, F., & De Vos, D. (2013). Metal–organic frameworks as catalysts: the role of metal active sites. Catalysis Science & Technology, 3(6), 1435. doi:10.1039/c3cy20813c | es_ES |
dc.description.references | Doonan, C. J., & Sumby, C. J. (2017). Metal–organic framework catalysis. CrystEngComm, 19(29), 4044-4048. doi:10.1039/c7ce90106b | es_ES |
dc.description.references | Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h | es_ES |
dc.description.references | Wang, Y., & Wöll, C. (2018). Chemical Reactions at Isolated Single-Sites Inside Metal–Organic Frameworks. Catalysis Letters, 148(8), 2201-2222. doi:10.1007/s10562-018-2432-2 | es_ES |
dc.description.references | Genna, D. T., Pfund, L. Y., Samblanet, D. C., Wong-Foy, A. G., Matzger, A. J., & Sanford, M. S. (2016). Rhodium Hydrogenation Catalysts Supported in Metal Organic Frameworks: Influence of the Framework on Catalytic Activity and Selectivity. ACS Catalysis, 6(6), 3569-3574. doi:10.1021/acscatal.6b00404 | es_ES |
dc.description.references | Chen, H., He, Y., Pfefferle, L. D., Pu, W., Wu, Y., & Qi, S. (2018). Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal-Organic Frameworks in the Aqueous Phase. ChemCatChem, 10(12), 2558-2570. doi:10.1002/cctc.201800211 | es_ES |
dc.description.references | Marx, S., Kleist, W., Huang, J., Maciejewski, M., & Baiker, A. (2010). Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). Dalton Transactions, 39(16), 3795. doi:10.1039/c002483j | es_ES |
dc.description.references | Fang, Z., Bueken, B., De Vos, D. E., & Fischer, R. A. (2015). Defect-Engineered Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(25), 7234-7254. doi:10.1002/anie.201411540 | es_ES |
dc.description.references | Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G., & Fischer, R. A. (2018). Defective Metal-Organic Frameworks. Advanced Materials, 30(37), 1704501. doi:10.1002/adma.201704501 | es_ES |
dc.description.references | Zhang, Y.-B., Furukawa, H., Ko, N., Nie, W., Park, H. J., Okajima, S., … Yaghi, O. M. (2015). Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal–Organic Framework-177. Journal of the American Chemical Society, 137(7), 2641-2650. doi:10.1021/ja512311a | es_ES |
dc.description.references | Drache, F., Cirujano, F. G., Nguyen, K. D., Bon, V., Senkovska, I., Llabrés i Xamena, F. X., & Kaskel, S. (2018). Anion Exchange and Catalytic Functionalization of the Zirconium-Based Metal–Organic Framework DUT-67. Crystal Growth & Design, 18(9), 5492-5500. doi:10.1021/acs.cgd.8b00832 | es_ES |
dc.description.references | Zhang, W., Kauer, M., Halbherr, O., Epp, K., Guo, P., Gonzalez, M. I., … Fischer, R. A. (2016). Ruthenium Metal-Organic Frameworks with Different Defect Types: Influence on Porosity, Sorption, and Catalytic Properties. Chemistry - A European Journal, 22(40), 14297-14307. doi:10.1002/chem.201602641 | es_ES |
dc.description.references | Kozachuk, O., Yusenko, K., Noei, H., Wang, Y., Walleck, S., Glaser, T., & Fischer, R. A. (2011). Solvothermal growth of a ruthenium metal–organic framework featuring HKUST-1 structure type as thin films on oxide surfaces. Chemical Communications, 47(30), 8509. doi:10.1039/c1cc11107h | es_ES |
dc.description.references | Kozachuk, O., Luz, I., Llabrés i Xamena, F. X., Noei, H., Kauer, M., Albada, H. B., … Fischer, R. A. (2014). Multifunctional, Defect-Engineered Metal-Organic Frameworks with Ruthenium Centers: Sorption and Catalytic Properties. Angewandte Chemie International Edition, 53(27), 7058-7062. doi:10.1002/anie.201311128 | es_ES |
dc.description.references | Agirrezabal-Telleria, I., Luz, I., Ortuño, M. A., Oregui-Bengoechea, M., Gandarias, I., López, N., … Soukri, M. (2019). Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts. Nature Communications, 10(1). doi:10.1038/s41467-019-10013-6 | es_ES |
dc.description.references | Zhang, W., Kozachuk, O., Medishetty, R., Schneemann, A., Wagner, R., Khaletskaya, K., … Fischer, R. A. (2015). Controlled SBU Approaches to Isoreticular Metal-Organic Framework Ruthenium-Analogues of HKUST-1. European Journal of Inorganic Chemistry, 2015(23), 3913-3920. doi:10.1002/ejic.201500478 | es_ES |
dc.description.references | Heinz, W. R., Kratky, T., Drees, M., Wimmer, A., Tomanec, O., Günther, S., … Fischer, R. A. (2019). Mixed precious-group metal–organic frameworks: a case study of the HKUST-1 analogue [RuxRh3−x(BTC)2]. Dalton Transactions, 48(32), 12031-12039. doi:10.1039/c9dt01198f | es_ES |
dc.description.references | Bäckvall, J.-E. (2002). Transition metal hydrides as active intermediates in hydrogen transfer reactions. Journal of Organometallic Chemistry, 652(1-2), 105-111. doi:10.1016/s0022-328x(02)01316-5 | es_ES |
dc.description.references | Chowdhury, R. L., & Bäckvall, J.-E. (1991). Efficient ruthenium-catalysed transfer hydrogenation of ketones by propan-2-ol. J. Chem. Soc., Chem. Commun., 0(16), 1063-1064. doi:10.1039/c39910001063 | es_ES |
dc.description.references | Ahlsten, N., Bartoszewicz, A., & Martín-Matute, B. (2012). Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes. Dalton Transactions, 41(6), 1660. doi:10.1039/c1dt11678a | es_ES |
dc.description.references | Ahlsten, N., Lundberg, H., & Martín-Matute, B. (2010). Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature. Green Chemistry, 12(9), 1628. doi:10.1039/c004964f | es_ES |
dc.description.references | Cahard, D., Gaillard, S., & Renaud, J.-L. (2015). Asymmetric isomerization of allylic alcohols. Tetrahedron Letters, 56(45), 6159-6169. doi:10.1016/j.tetlet.2015.09.098 | es_ES |
dc.description.references | Xia, T., Wei, Z., Spiegelberg, B., Jiao, H., Hinze, S., & de Vries, J. G. (2018). Isomerization of Allylic Alcohols to Ketones Catalyzed by Well-Defined Iron PNP Pincer Catalysts. Chemistry - A European Journal, 24(16), 4043-4049. doi:10.1002/chem.201705454 | es_ES |
dc.description.references | Scalambra, F., Lorenzo-Luis, P., de los Rios, I., & Romerosa, A. (2019). Isomerization of allylic alcohols in water catalyzed by transition metal complexes. Coordination Chemistry Reviews, 393, 118-148. doi:10.1016/j.ccr.2019.04.012 | es_ES |
dc.description.references | Yamaguchi, K., Koike, T., Kotani, M., Matsushita, M., Shinachi, S., & Mizuno, N. (2005). Synthetic Scope and Mechanistic Studies of Ru(OH)x/Al2O3-Catalyzed Heterogeneous Hydrogen-Transfer Reactions. Chemistry - A European Journal, 11(22), 6574-6582. doi:10.1002/chem.200500539 | es_ES |
dc.description.references | Mitchell, R. W., Spencer, A., & Wilkinson, G. (1973). Carboxylato-triphenylphosphine complexes of ruthenium, cationic triphenylphosphine complexes derived from them, and their behaviour as homogeneous hydrogenation catalysts for alkenes. Journal of the Chemical Society, Dalton Transactions, (8), 846. doi:10.1039/dt9730000846 | es_ES |