- -

Vegetation change over a period of 46 years in a Mediterranean mountain massif (Penyagolosa, Spain)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vegetation change over a period of 46 years in a Mediterranean mountain massif (Penyagolosa, Spain)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Merle Farinós, Hugo Basilio es_ES
dc.contributor.author Garmendia, Alfonso es_ES
dc.contributor.author Hernández, Héctor es_ES
dc.contributor.author Ferriol Molina, María es_ES
dc.date.accessioned 2021-04-17T03:33:19Z
dc.date.available 2021-04-17T03:33:19Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 1402-2001 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165298
dc.description.abstract [EN] Questions The Mediterranean mountain massifs are biodiversity hotspots threatened by climate change and land use transformations, among other factors. Did vegetation composition and alpha- and beta-diversities change in mid- and high-elevation Mediterranean ecosystems over the last 46 years? Can these changes be explained by climate change or land use? Location Medium and high altitudes of the Penyagolosa Massif, Castellon, Eastern Spain. Methods In 2014, we resurveyed 92 vegetation plots sampled in 1968, belonging to nine plant communities distributed on basic and acid soils. We performed estimates of alpha- and beta-diversity, multidimensional ordination of species composition, ecological characterisation of species and non-parametric tests to identify vegetation change over time. Results We observed different patterns of vegetation change depending on the plant community; an increase in alpha-diversity, especially in high-altitude habitats, and a homogenisation of species composition among plant communities. Seral communities and forests increased particularly in locations on basic soils that used to be occupied by pastures and communities of degraded successional stages. Higher Ellenberg indicator values of temperature and light, and loss of temperate taxa, which are usually rare in the region, were found in the climax forest of high altitudes and some acidophilous communities. However, altitudinal shifts of species distributions were detected only in 14% of plant species, both upwards and downwards. An increase of nitrophily at medium altitudes was also observed. Conclusions The results suggested that land use change related with abandonment of agro-sylvo-pastoral systems was the major driving force of vegetation dynamics in most of the seral plant communities, while thermophilisation was more evident in the high-altitude climax forest. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Applied Vegetation Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biodiversity es_ES
dc.subject Climate change es_ES
dc.subject Ecological indicator values es_ES
dc.subject Land use es_ES
dc.subject Long-term resurveys es_ES
dc.subject Mediterranean mountain massif es_ES
dc.subject Medium altitude es_ES
dc.subject Plant community es_ES
dc.subject.classification BOTANICA es_ES
dc.title Vegetation change over a period of 46 years in a Mediterranean mountain massif (Penyagolosa, Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/avsc.12507 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Merle Farinós, HB.; Garmendia, A.; Hernández, H.; Ferriol Molina, M. (2020). Vegetation change over a period of 46 years in a Mediterranean mountain massif (Penyagolosa, Spain). Applied Vegetation Science. 23(4):495-507. https://doi.org/10.1111/avsc.12507 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/avsc.12507 es_ES
dc.description.upvformatpinicio 495 es_ES
dc.description.upvformatpfin 507 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\415704 es_ES
dc.description.references Aguillaume, L., Rodrigo, A., & Avila, A. (2016). Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest. Science of The Total Environment, 544, 919-928. doi:10.1016/j.scitotenv.2015.12.017 es_ES
dc.description.references Anderson, M. J. (2005). Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics, 62(1), 245-253. doi:10.1111/j.1541-0420.2005.00440.x es_ES
dc.description.references Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9(6), 683-693. doi:10.1111/j.1461-0248.2006.00926.x es_ES
dc.description.references Benito, B., Lorite, J., & Peñas, J. (2011). Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change, 108(3), 471-483. doi:10.1007/s10584-010-0015-3 es_ES
dc.description.references Bodin, J., Badeau, V., Bruno, E., Cluzeau, C., Moisselin, J.-M., Walther, G.-R., & Dupouey, J.-L. (2012). Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation? Journal of Vegetation Science, 24(2), 269-283. doi:10.1111/j.1654-1103.2012.01456.x es_ES
dc.description.references Bonet, A., & G. Pausas, J. (2004). Species richness and cover along a 60-year chronosequence in old-fields of southeastern Spain. Plant Ecology formerly `Vegetatio’, 174(2), 257-270. doi:10.1023/b:vege.0000049106.96330.9c es_ES
dc.description.references Braun-Blanquet, J. (1964). Pflanzensoziologie. doi:10.1007/978-3-7091-8110-2 es_ES
dc.description.references Cannone, N., & Pignatti, S. (2014). Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change, 123(2), 201-214. doi:10.1007/s10584-014-1065-8 es_ES
dc.description.references Chytrý, M., Tichý, L., Hennekens, S. M., & Schaminée, J. H. J. (2013). Assessing vegetation change using vegetation-plot databases: a risky business. Applied Vegetation Science, 17(1), 32-41. doi:10.1111/avsc.12050 es_ES
dc.description.references Chrenková, K., Mataix-Solera, J., Dlapa, P., & Arcenegui, V. (2014). Long-term changes in soil aggregation comparing forest and agricultural land use in different Mediterranean soil types. Geoderma, 235-236, 290-299. doi:10.1016/j.geoderma.2014.07.025 es_ES
dc.description.references Clavero, M., Villero, D., & Brotons, L. (2011). Climate Change or Land Use Dynamics: Do We Know What Climate Change Indicators Indicate? PLoS ONE, 6(4), e18581. doi:10.1371/journal.pone.0018581 es_ES
dc.description.references Cuesta, B., Villar-Salvador, P., Puértolas, J., Rey Benayas, J. M., & Michalet, R. (2010). Facilitation ofQuercus ilexin Mediterranean shrubland is explained by both direct and indirect interactions mediated by herbs. Journal of Ecology, 98(3), 687-696. doi:10.1111/j.1365-2745.2010.01655.x es_ES
dc.description.references Evangelista, A., Frate, L., Carranza, M. L., Attorre, F., Pelino, G., & Stanisci, A. (2016). Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years. AoB Plants, 8, plw004. doi:10.1093/aobpla/plw004 es_ES
dc.description.references Fernández Calzado, M. R., & Molero, J. (2013). Changes in the summit flora of a Mediterranean mountain (Sierra Nevada, Spain) as a possible effect of climate change. LAZAROA, 34(1), 65-75. doi:10.5209/rev_laza.2013.v34.n1.41523 es_ES
dc.description.references Frate, L., Carranza, M. L., Evangelista, A., Stinca, A., Schaminée, J. H. J., & Stanisci, A. (2018). Climate and land use change impacts on Mediterranean high-mountain vegetation in the Apennines since the 1950s. Plant Ecology & Diversity, 11(1), 85-96. doi:10.1080/17550874.2018.1473521 es_ES
dc.description.references Geri, F., Amici, V., & Rocchini, D. (2010). Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370-379. doi:10.1016/j.apgeog.2009.10.006 es_ES
dc.description.references Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., … Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111-115. doi:10.1038/nclimate1329 es_ES
dc.description.references Guiot, J., & Cramer, W. (2016). Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science, 354(6311), 465-468. doi:10.1126/science.aah5015 es_ES
dc.description.references Hédl, R., Bernhardt-Römermann, M., Grytnes, J.-A., Jurasinski, G., & Ewald, J. (2017). Resurvey of historical vegetation plots: a tool for understanding long-term dynamics of plant communities. Applied Vegetation Science, 20(2), 161-163. doi:10.1111/avsc.12307 es_ES
dc.description.references Jiménez-Alfaro, B., Gavilán, R. G., Escudero, A., Iriondo, J. M., & Fernández-González, F. (2014). Decline of dry grassland specialists in Mediterranean high-mountain communities influenced by recent climate warming. Journal of Vegetation Science, 25(6), 1394-1404. doi:10.1111/jvs.12198 es_ES
dc.description.references Kapfer, J., Hédl, R., Jurasinski, G., Kopecký, M., Schei, F. H., & Grytnes, J.-A. (2016). Resurveying historical vegetation data - opportunities and challenges. Applied Vegetation Science, 20(2), 164-171. doi:10.1111/avsc.12269 es_ES
dc.description.references Kelly, A. E., & Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33), 11823-11826. doi:10.1073/pnas.0802891105 es_ES
dc.description.references Lenoir, J., Gégout, J. C., Dupouey, J. L., Bert, D., & Svenning, J.-C. (2010). Forest plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland). Journal of Vegetation Science, 21(5), 949-964. doi:10.1111/j.1654-1103.2010.01201.x es_ES
dc.description.references Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A., Scott, E. M., … Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology & Evolution, 25(10), 574-582. doi:10.1016/j.tree.2010.06.016 es_ES
dc.description.references Malavasi, M., Carranza, M. L., Moravec, D., & Cutini, M. (2018). Reforestation dynamics after land abandonment: a trajectory analysis in Mediterranean mountain landscapes. Regional Environmental Change, 18(8), 2459-2469. doi:10.1007/s10113-018-1368-9 es_ES
dc.description.references Matson, P., Lohse, K. A., & Hall, S. J. (2002). The Globalization of Nitrogen Deposition: Consequences for Terrestrial Ecosystems. AMBIO: A Journal of the Human Environment, 31(2), 113-119. doi:10.1579/0044-7447-31.2.113 es_ES
dc.description.references Millán, M. M., Estrela, M. J., & Miró, J. (2005). Rainfall Components: Variability and Spatial Distribution in a Mediterranean Area (Valencia Region). Journal of Climate, 18(14), 2682-2705. doi:10.1175/jcli3426.1 es_ES
dc.description.references Miró, J. J., Estrela, M. J., Caselles, V., & Olcina-Cantos, J. (2016). Fine-scale estimations of bioclimatic change in the Valencia region, Spain. Atmospheric Research, 180, 150-164. doi:10.1016/j.atmosres.2016.05.020 es_ES
dc.description.references Miró Pérez, J. J., Estrela Navarro, M. J., & Olcina Cantos, J. (2015). Statistical downscaling and attribution of air temperature change patterns in the Valencia region (1948–2011). Atmospheric Research, 156, 189-212. doi:10.1016/j.atmosres.2015.01.003 es_ES
dc.description.references Mouillot, F., Rambal, S., & Joffre, R. (2002). Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology, 8(5), 423-437. doi:10.1046/j.1365-2486.2002.00494.x es_ES
dc.description.references Bravo, D. N., Araújo, M. B., Lasanta, T., & Moreno, J. I. L. (2008). Climate Change in Mediterranean Mountains during the 21st Century. AMBIO: A Journal of the Human Environment, 37(4), 280-285. doi:10.1579/0044-7447(2008)37[280:ccimmd]2.0.co;2 es_ES
dc.description.references Ochoa-Hueso, R., Allen, E. B., Branquinho, C., Cruz, C., Dias, T., Fenn, M. E., … Stock, W. D. (2011). Nitrogen deposition effects on Mediterranean-type ecosystems: An ecological assessment. Environmental Pollution, 159(10), 2265-2279. doi:10.1016/j.envpol.2010.12.019 es_ES
dc.description.references Palombo, C., Chirici, G., Marchetti, M., & Tognetti, R. (2013). Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change? Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 147(1), 1-11. doi:10.1080/11263504.2013.772081 es_ES
dc.description.references Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., … Grabherr, G. (2012). Recent Plant Diversity Changes on Europe’s Mountain Summits. Science, 336(6079), 353-355. doi:10.1126/science.1219033 es_ES
dc.description.references Pausas, J. G., & Millán, M. M. (2019). Greening and Browning in a Climate Change Hotspot: The Mediterranean Basin. BioScience, 69(2), 143-151. doi:10.1093/biosci/biy157 es_ES
dc.description.references Peco, B., Sánchez, A. M., & Azcárate, F. M. (2006). Abandonment in grazing systems: Consequences for vegetation and soil. Agriculture, Ecosystems & Environment, 113(1-4), 284-294. doi:10.1016/j.agee.2005.09.017 es_ES
dc.description.references Rivas-Martínez, S., Penas, Á., del Río, S., Díaz González, T. E., & Rivas-Sáenz, S. (2017). Bioclimatology of the Iberian Peninsula and the Balearic Islands. Plant and Vegetation, 29-80. doi:10.1007/978-3-319-54784-8_2 es_ES
dc.description.references Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H. S., Schmitz, M. F., & Pineda, F. D. (2011). Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39(1), 162-176. doi:10.1111/j.1365-2699.2011.02592.x es_ES
dc.description.references SANZ-ELORZA, M. (2003). Changes in the High-mountain Vegetation of the Central Iberian Peninsula as a Probable Sign of Global Warming. Annals of Botany, 92(2), 273-280. doi:10.1093/aob/mcg130 es_ES
dc.description.references Sirami, C., Nespoulous, A., Cheylan, J.-P., Marty, P., Hvenegaard, G. T., Geniez, P., … Martin, J.-L. (2010). Long-term anthropogenic and ecological dynamics of a Mediterranean landscape: Impacts on multiple taxa. Landscape and Urban Planning, 96(4), 214-223. doi:10.1016/j.landurbplan.2010.03.007 es_ES
dc.description.references Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., … Barni, E. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556(7700), 231-234. doi:10.1038/s41586-018-0005-6 es_ES
dc.description.references Stöckli, V., Wipf, S., Nilsson, C., & Rixen, C. (2011). Using historical plant surveys to track biodiversity on mountain summits. Plant Ecology & Diversity, 4(4), 415-425. doi:10.1080/17550874.2011.651504 es_ES
dc.description.references Van Hall, R. L., Cammeraat, L. H., Keesstra, S. D., & Zorn, M. (2017). Impact of secondary vegetation succession on soil quality in a humid Mediterranean landscape. CATENA, 149, 836-843. doi:10.1016/j.catena.2016.05.021 es_ES
dc.description.references Zobel, K., Zobel, M., & Peet, R. K. (1993). Change in pattern diversity during secondary succession in Estonian forests. Journal of Vegetation Science, 4(4), 489-498. doi:10.2307/3236076 es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem