Mostrar el registro sencillo del ítem
dc.contributor.author | García-Hurtado, Elisa | es_ES |
dc.contributor.author | Rodríguez-Fernández, Aida | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Martínez, Cristina | es_ES |
dc.date.accessioned | 2021-04-20T03:31:00Z | |
dc.date.available | 2021-04-20T03:31:00Z | |
dc.date.issued | 2020-08-21 | es_ES |
dc.identifier.issn | 2044-4753 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165356 | |
dc.description.abstract | [EN] In the present manuscript, the influence of the zeolite structure and crystal size on bifunctional tandem catalysts combining K-promoted iron oxide (K/Fe3O4) with different zeolites has been studied for the CO(2)hydrogenation reaction at 320 degrees C and 25 bar. First, to evaluate the influence of the zeolite structure on CO(2)conversion, three different zeolite topologies have been evaluated (BEA, MFI and CHA) with similar Si/Al molar ratios. The combination of K/Fe(3)O(4)with MFI maximizes the formation of aromatic products, while its combination with CHA and BEA increases the C-1-C(4)gas fractions, with a high olefin selectivity. In addition, aromatics and aliphatic hydrocarbons are present in the condensed liquids of the tandem catalysts containing BEA, while no aromatics are observed for those with CHA. These different product selectivities can be ascribed to the different consecutive reactions within the three zeolites, where MFI favors the aromatization of alkenes, and BEA and CHA favor oligomerization/cracking reactions leading to an increase of light olefin yield. Second, the evaluation of the nanosized form of the three proposed zeolite frameworks has also been carried out. The reduction of the particle size allows for increasing light olefin selectivity in all cases as compared to zeolites with larger crystals. Shorter intracrystalline diffusion paths facilitate the egression of light olefins before being involved in consecutive oligomerization reactions. In the particular case of the tandem catalysts with nanosized MFI zeolites, the C-2-C(4)fraction and its olefinicity are increased while maintaining the overall aromatic selectivity comparable to that obtained with micron-sized MFI zeolites. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE), by the Fundacion Ramon Areces through a research contract (CIVP18A3908) and by Generalitat Valenciana (AICO/2019/060). A. R. F. acknowledges the Spanish Government-MINECO for a FPU scholarship (FPU2017/01521). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | CO(2)hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/d0cy00712a | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundación Ramón Areces//CIVP18A3908/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F060/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//FPU2017%2F01521/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | García-Hurtado, E.; Rodríguez-Fernández, A.; Moliner Marin, M.; Martínez, C. (2020). CO(2)hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size. Catalysis Science & Technology. 10(16):5648-5658. https://doi.org/10.1039/d0cy00712a | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/d0cy00712a | es_ES |
dc.description.upvformatpinicio | 5648 | es_ES |
dc.description.upvformatpfin | 5658 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 16 | es_ES |
dc.relation.pasarela | S\427095 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. doi:10.1016/j.enpol.2012.10.046 | es_ES |
dc.description.references | Dincer, I. (2000). Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews, 4(2), 157-175. doi:10.1016/s1364-0321(99)00011-8 | es_ES |
dc.description.references | Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. doi:10.1016/j.rser.2016.05.022 | es_ES |
dc.description.references | Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d | es_ES |
dc.description.references | Abate, S., Barbera, K., Centi, G., Lanzafame, P., & Perathoner, S. (2016). Disruptive catalysis by zeolites. Catalysis Science & Technology, 6(8), 2485-2501. doi:10.1039/c5cy02184g | es_ES |
dc.description.references | Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K., & Olah, G. A. (2014). Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem. Soc. Rev., 43(23), 7995-8048. doi:10.1039/c4cs00122b | es_ES |
dc.description.references | Prieto, G. (2017). Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. ChemSusChem, 10(6), 1056-1070. doi:10.1002/cssc.201601591 | es_ES |
dc.description.references | Dorner, R. W., Hardy, D. R., Williams, F. W., & Willauer, H. D. (2010). Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy & Environmental Science, 3(7), 884. doi:10.1039/c001514h | es_ES |
dc.description.references | Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., … Sun, Y. (2017). Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 9(10), 1019-1024. doi:10.1038/nchem.2794 | es_ES |
dc.description.references | WEATHERBEE, G. (1984). Hydrogenation of CO2 on group VIII metals IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru. Journal of Catalysis, 87(2), 352-362. doi:10.1016/0021-9517(84)90196-9 | es_ES |
dc.description.references | Lee, M.-D., Lee, J.-F., Chang, C.-S., & Dong, T.-Y. (1991). Effects of addition of chromium, manganese, or molybdenum to iron catalysts for carbon dioxide hydrogenation. Applied Catalysis, 72(2), 267-281. doi:10.1016/0166-9834(91)85055-z | es_ES |
dc.description.references | Lee, J.-F., Chern, W.-S., Lee, M.-D., & Dong, T.-Y. (2009). Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium. The Canadian Journal of Chemical Engineering, 70(3), 511-515. doi:10.1002/cjce.5450700314 | es_ES |
dc.description.references | Pijolat, M., Perrichon, V., Primet, M., & Bussiere, P. (1982). Hydrocondensation of carbon dioxide over an iron-alumina catalyst: A three-step model. Journal of Molecular Catalysis, 17(2-3), 367-380. doi:10.1016/0304-5102(82)85048-7 | es_ES |
dc.description.references | Guerrero-Ruiz, A., & Rodríguez-Ramos, I. (1985). Hydrogenation of CO2 on carbon-supported nickel and cobalt. Reaction Kinetics and Catalysis Letters, 29(1), 93-99. doi:10.1007/bf02067954 | es_ES |
dc.description.references | Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., & Gu, S. (2014). A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol., 4(8), 2210-2229. doi:10.1039/c4cy00327f | es_ES |
dc.description.references | Ramirez, A., Gevers, L., Bavykina, A., Ould-Chikh, S., & Gascon, J. (2018). Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins. ACS Catalysis, 8(10), 9174-9182. doi:10.1021/acscatal.8b02892 | es_ES |
dc.description.references | Anderson, R. B., Friedel, R. A., & Storch, H. H. (1951). Fischer‐Tropsch Reaction Mechanism Involving Stepwise Growth of Carbon Chain. The Journal of Chemical Physics, 19(3), 313-319. doi:10.1063/1.1748201 | es_ES |
dc.description.references | Griboval-Constant, A., Butel, A., Ordomsky, V. V., Chernavskii, P. A., & Khodakov, A. Y. (2014). Cobalt and iron species in alumina supported bimetallic catalysts for Fischer–Tropsch reaction. Applied Catalysis A: General, 481, 116-126. doi:10.1016/j.apcata.2014.04.047 | es_ES |
dc.description.references | Patzlaff, J., Liu, Y., Graffmann, C., & Gaube, J. (1999). Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis. Applied Catalysis A: General, 186(1-2), 109-119. doi:10.1016/s0926-860x(99)00167-2 | es_ES |
dc.description.references | Patzlaff, J., Liu, Y., Graffmann, C., & Gaube, J. (2002). Interpretation and kinetic modeling of product distributions of cobalt catalyzed Fischer–Tropsch synthesis. Catalysis Today, 71(3-4), 381-394. doi:10.1016/s0920-5861(01)00465-5 | es_ES |
dc.description.references | Torres Galvis, H. M., Bitter, J. H., Khare, C. B., Ruitenbeek, M., Dugulan, A. I., & de Jong, K. P. (2012). Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science, 335(6070), 835-838. doi:10.1126/science.1215614 | es_ES |
dc.description.references | Kim, H., Choi, D.-H., Nam, S.-S., Choi, M.-J., & Lee, K.-W. (1998). The selective synthesis of lower olefins(C2 - C4) by the CO2 hydrogenation over Iron catalysts promoted with Potassium and supported on ion exchanged(H, K) Zeolite-Y. Advances in Chemical Conversions for Mitigating Carbon Dioxide, Proceedings of the Fourth International Conference on Carbon Dioxide Utilization, 407-410. doi:10.1016/s0167-2991(98)80782-9 | es_ES |
dc.description.references | Nam, S.-S., Kim, H., Kishan, G., Choi, M.-J., & Lee, K.-W. (1999). Catalytic conversion of carbon dioxide into hydrocarbons over iron supported on alkali ion-exchanged Y-zeolite catalysts. Applied Catalysis A: General, 179(1-2), 155-163. doi:10.1016/s0926-860x(98)00322-6 | es_ES |
dc.description.references | Dokania, A., Ramirez, A., Bavykina, A., & Gascon, J. (2018). Heterogeneous Catalysis for the Valorization of CO2: Role of Bifunctional Processes in the Production of Chemicals. ACS Energy Letters, 4(1), 167-176. doi:10.1021/acsenergylett.8b01910 | es_ES |
dc.description.references | Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., … Sun, J. (2017). Directly converting CO2 into a gasoline fuel. Nature Communications, 8(1). doi:10.1038/ncomms15174 | es_ES |
dc.description.references | Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., … Gascon, J. (2019). Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catalysis, 9(7), 6320-6334. doi:10.1021/acscatal.9b01466 | es_ES |
dc.description.references | Mintova, S., Gilson, J.-P., & Valtchev, V. (2013). Advances in nanosized zeolites. Nanoscale, 5(15), 6693. doi:10.1039/c3nr01629c | es_ES |
dc.description.references | Mintova, S., Jaber, M., & Valtchev, V. (2015). Nanosized microporous crystals: emerging applications. Chemical Society Reviews, 44(20), 7207-7233. doi:10.1039/c5cs00210a | es_ES |
dc.description.references | Rimer, J. D., Kumar, M., Li, R., Lupulescu, A. I., & Oleksiak, M. D. (2014). Tailoring the physicochemical properties of zeolite catalysts. Catal. Sci. Technol., 4(11), 3762-3771. doi:10.1039/c4cy00858h | es_ES |
dc.description.references | Díaz-Rey, M. R., Paris, C., Martínez-Franco, R., Moliner, M., Martínez, C., & Corma, A. (2017). Efficient Oligomerization of Pentene into Liquid Fuels on Nanocrystalline Beta Zeolites. ACS Catalysis, 7(9), 6170-6178. doi:10.1021/acscatal.7b00817 | es_ES |
dc.description.references | Gallego, E. M., Paris, C., Díaz-Rey, M. R., Martínez-Armero, M. E., Martínez-Triguero, J., Martínez, C., … Corma, A. (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 8(12), 8138-8149. doi:10.1039/c7sc02858j | es_ES |
dc.description.references | Gallego, E. M., Li, C., Paris, C., Martín, N., Martínez-Triguero, J., Boronat, M., … Corma, A. (2018). Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanol-to-Olefin Performance. Chemistry - A European Journal, 24(55), 14631-14635. doi:10.1002/chem.201803637 | es_ES |
dc.description.references | Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f | es_ES |
dc.description.references | Camblor, M. A., Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25(1-3), 59-74. doi:10.1016/s1387-1811(98)00172-3 | es_ES |
dc.description.references | Boronat, M., & Corma, A. (2019). What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catalysis, 9(2), 1539-1548. doi:10.1021/acscatal.8b04317 | es_ES |
dc.description.references | Ramirez, A., Ould‐Chikh, S., Gevers, L., Chowdhury, A. D., Abou‐Hamad, E., Aguilar‐Tapia, A., … Gascon, J. (2019). Tandem Conversion of CO 2 to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts. ChemCatChem, 11(12), 2879-2886. doi:10.1002/cctc.201900762 | es_ES |
dc.description.references | Arora, S. S., Shi, Z., & Bhan, A. (2019). Mechanistic Basis for Effects of High-Pressure H2 Cofeeds on Methanol-to-Hydrocarbons Catalysis over Zeolites. ACS Catalysis, 9(7), 6407-6414. doi:10.1021/acscatal.9b00969 | es_ES |
dc.description.references | Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738 | es_ES |
dc.description.references | Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 | es_ES |
dc.description.references | Tang, X., Zhou, H., Qian, W., Wang, D., Jin, Y., & Wei, F. (2008). High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst. Catalysis Letters, 125(3-4), 380-385. doi:10.1007/s10562-008-9564-8 | es_ES |
dc.description.references | Weber, J. L., Dugulan, I., de Jongh, P. E., & de Jong, K. P. (2018). Bifunctional Catalysis for the Conversion of Synthesis Gas to Olefins and Aromatics. ChemCatChem, 10(5), 1107-1112. doi:10.1002/cctc.201701667 | es_ES |
dc.description.references | Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8 | es_ES |
dc.description.references | Tsai, T. (1999). Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 181(2), 355-398. doi:10.1016/s0926-860x(98)00396-2 | es_ES |