- -

Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pallarés Rubio, Luis es_ES
dc.contributor.author Aguero Ramón Llin, Antonio es_ES
dc.contributor.author Martí Vargas, José Rocío es_ES
dc.contributor.author Pallarés Rubio, Francisco Javier es_ES
dc.date.accessioned 2021-04-23T03:31:47Z
dc.date.available 2021-04-23T03:31:47Z
dc.date.issued 2020-11-30 es_ES
dc.identifier.issn 0950-0618 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165522
dc.description.abstract [EN] Headed studs are often used to facilitate composite actions between steel and concrete structures. In steel building structures, reinforced concrete walls are commonly used to ensure composite action to stiffen steel frames as a lateral resistance system against horizontal loads, such as earthquakes or wind. Such walls need to be anchored to the steel frame by headed studs, and these must be able to withstand shear and tension forces, as well as the interaction between these two. To design such anchors in concrete walls, it is necessary to describe experimentally their behaviour under monotonic and cyclic shear forces given that edge conditions and reinforcing details influence stud stiffness and strength. As very few experimental studies have examined headed studs subjected to monotonic or cyclic shear with usual boundary effects in steel frames with reinforced infill walls, a new experimental test setup and test results are presented herein. Four tests on headed studs were carried out to describe the behaviour of headed studs under monotonic and cyclic shear loading, as well as to validate the new test setup. This research shows that the behaviour of studs installed in infill walls without group effects are conservatively predicted by EC-4 and Makino's formula under monotonic shear loading. Furthermore, a reduction factor of 0.70 is recommended to design studs subjected to cyclic shear forces. es_ES
dc.description.sponsorship The present study was supported by the Universitat Politecnica de Valencia (UPV) and the Spanish Ministry of Economy and Competitiveness through Project BIA2015-70651-R and Generalitat Valenciana (GVA) by BEST2018. The authors would like to express their gratitude to Debra Westall for revising the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Construction and Building Materials es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Headed stud es_ES
dc.subject Steel frame es_ES
dc.subject Reinforced concrete infill wall es_ES
dc.subject SRCW es_ES
dc.subject Stud strength es_ES
dc.subject Cyclic shear action es_ES
dc.subject Experimental behaviour es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.conbuildmat.2020.120018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70651-R/ES/CERRAMIENTOS NO CONVENCIONALES PARA LA PROTECCION DE EDIFICACIONES E INFRAESTRUCTURAS CRITICAS: ATENUACION DE LOS EFECTOS DE ACCIONES SISMICAS Y EXPLOSIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Pallarés Rubio, L.; Aguero Ramón Llin, A.; Martí Vargas, JR.; Pallarés Rubio, FJ. (2020). Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls. Construction and Building Materials. 262:1-14. https://doi.org/10.1016/j.conbuildmat.2020.120018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.conbuildmat.2020.120018 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 262 es_ES
dc.relation.pasarela S\421630 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Morelli, F., Caprili, S., & Salvatore, W. (2018). Dataset on the cyclic experimental behavior of Steel frames with Reinforced Concrete infill Walls. Data in Brief, 19, 2061-2070. doi:10.1016/j.dib.2018.06.111 es_ES
dc.description.references Morelli, F., Mussini, N., & Salvatore, W. (2018). Influence of shear studs distribution on the mechanical behaviour of dissipative hybrid steel frames with r.c. infill walls. Bulletin of Earthquake Engineering, 17(2), 957-983. doi:10.1007/s10518-018-0475-9 es_ES
dc.description.references Peng, X., & Gu, Q. (2011). Seismic behavior analysis for composite structures of steel frame-reinforced concrete infill wall. The Structural Design of Tall and Special Buildings, 22(11), 831-846. doi:10.1002/tal.724 es_ES
dc.description.references AISC360. Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute for Steel Construction. Chicago, Illinois. 2016 es_ES
dc.description.references ACI318. Building code requirements for structural concrete (ACI318) and commentary (ACI318R). Farmington Hills, Michigan. 2008. es_ES
dc.description.references Comite Euro-International du Beton - CEB. Fastenings to concrete and masonry structures. State of the art report. Bulletin 216, 1994. Telford, London. es_ES
dc.description.references Pallarés, L., & Hajjar, J. F. (2010). Headed steel stud anchors in composite structures, Part I: Shear. Journal of Constructional Steel Research, 66(2), 198-212. doi:10.1016/j.jcsr.2009.08.009 es_ES
dc.description.references Hawkins, N. M., & Mitchell, D. (1984). Seismic Response of Composite Shear Connections. Journal of Structural Engineering, 110(9), 2120-2136. doi:10.1061/(asce)0733-9445(1984)110:9(2120) es_ES
dc.description.references Gattesco, N., & Giuriani, E. (1996). Experimental study on stud shear connectors subjected to cyclic loading. Journal of Constructional Steel Research, 38(1), 1-21. doi:10.1016/0143-974x(96)00007-7 es_ES
dc.description.references Bursi, O S, and Ballerini, M. Behavior of a steel–concrete composite substructure with full and partial. Proceedings of the Eleventh World Congress on Earthquake Engineering. Acapulco: Elsevier. 1996. Paper 771. es_ES
dc.description.references Zandonini, R, and Bursi, O.S. Cyclic behavior of headed shear stud connectors. Edited by J F Hajjar, M Hosain, W S Easterling and B M Shahrooz. Composite construction in steel and concrete IV. Reston: ASCE. 470–482. 2002. es_ES
dc.description.references Civjan, S. A., & Singh, P. (2003). Behavior of Shear Studs Subjected to Fully Reversed Cyclic Loading. Journal of Structural Engineering, 129(11), 1466-1474. doi:10.1061/(asce)0733-9445(2003)129:11(1466) es_ES
dc.description.references Shariati, A., Shariati, M., Ramli Sulong, N. H., Suhatril, M., Arabnejad Khanouki, M. M., & Mahoutian, M. (2014). Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete. Construction and Building Materials, 52, 276-283. doi:10.1016/j.conbuildmat.2013.11.036 es_ES
dc.description.references Shariati, M., Ramli Sulong, N. H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M. M., & Sinaei, H. (2013). Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading. Construction and Building Materials, 38, 582-593. doi:10.1016/j.conbuildmat.2012.07.050 es_ES
dc.description.references Bezerra, L. M., Barbosa, W. C. S., Bonilla, J., & Cavalcante, O. R. O. (2018). Truss-type shear connector for composite steel-concrete beams. Construction and Building Materials, 167, 757-767. doi:10.1016/j.conbuildmat.2018.01.183 es_ES
dc.description.references Eurocode 4, UNE - ENV 1994-1.1. Design of composite steel and concrete structures. Part 1-1: General. Common rules and rules for buildings. AENOR. 2004. es_ES
dc.description.references FEMA-461. Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Redwood City, California. 2007. es_ES
dc.description.references Wang, J., Qi, J., Tong, T., Xu, Q., & Xiu, H. (2019). Static behavior of large stud shear connectors in steel-UHPC composite structures. Engineering Structures, 178, 534-542. doi:10.1016/j.engstruct.2018.07.058 es_ES
dc.description.references Burnet, M. J., & Oehlers, D. J. (2001). FRACTURE OF MECHANICAL SHEAR CONNECTORS IN COMPOSITE BEAMS*. Mechanics of Structures and Machines, 29(1), 1-41. doi:10.1081/sme-100000001 es_ES
dc.description.references Oehlers, D. J., & Coughlan, C. G. (1986). The shear stiffness of stud shear connections in composite beams. Journal of Constructional Steel Research, 6(4), 273-284. doi:10.1016/0143-974x(86)90008-8 es_ES
dc.description.references An, L., & Cederwall, K. (1996). Push-out tests on studs in high strength and normal strength concrete. Journal of Constructional Steel Research, 36(1), 15-29. doi:10.1016/0143-974x(94)00036-h es_ES
dc.description.references Xue, W., Ding, M., Wang, H., & Luo, Z. (2008). Static Behavior and Theoretical Model of Stud Shear Connectors. Journal of Bridge Engineering, 13(6), 623-634. doi:10.1061/(asce)1084-0702(2008)13:6(623) es_ES
dc.description.references Wang, L., Webster, M.D. and Hajjar, J.F. Pushout tests on deconstructable steel-concrete shear connections in sustainable composite beams. Journal of constructional steel research, 153.Elsevier. 2019. 618-637. es_ES
dc.description.references Buttry, K. E. Behaviour of stud connectors in lightweight and normal-weight concrete. M.S. Thesis (unpublished), University of Missouri, USA, August 1965. es_ES
dc.description.references Classen, M. and Hegger, J. Shear-slip behaviour and ductility of composite dowel connectors with pry-out failure. Engineering Structures, 150. Elsevier. 2017. 428-437. es_ES
dc.description.references Makino, M. Design of framed steel structures with infill reinforced concrete walls. Edited by Roeder CW. ASCE. New York: ASCE. 1985. 279-287. es_ES
dc.description.references NEHPR. Recommended Seismic Provisions for New Buildings and Other Structures. 2015 Edition. es_ES
dc.description.references AISC341. Seismic Provisions for Structural Steel Buildings. American Institute for Steel Construction. Chicago, Illinois. 2016. es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem