Mostrar el registro sencillo del ítem
dc.contributor.author | Pallarés Rubio, Luis | es_ES |
dc.contributor.author | Aguero Ramón Llin, Antonio | es_ES |
dc.contributor.author | Martí Vargas, José Rocío | es_ES |
dc.contributor.author | Pallarés Rubio, Francisco Javier | es_ES |
dc.date.accessioned | 2021-04-23T03:31:47Z | |
dc.date.available | 2021-04-23T03:31:47Z | |
dc.date.issued | 2020-11-30 | es_ES |
dc.identifier.issn | 0950-0618 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165522 | |
dc.description.abstract | [EN] Headed studs are often used to facilitate composite actions between steel and concrete structures. In steel building structures, reinforced concrete walls are commonly used to ensure composite action to stiffen steel frames as a lateral resistance system against horizontal loads, such as earthquakes or wind. Such walls need to be anchored to the steel frame by headed studs, and these must be able to withstand shear and tension forces, as well as the interaction between these two. To design such anchors in concrete walls, it is necessary to describe experimentally their behaviour under monotonic and cyclic shear forces given that edge conditions and reinforcing details influence stud stiffness and strength. As very few experimental studies have examined headed studs subjected to monotonic or cyclic shear with usual boundary effects in steel frames with reinforced infill walls, a new experimental test setup and test results are presented herein. Four tests on headed studs were carried out to describe the behaviour of headed studs under monotonic and cyclic shear loading, as well as to validate the new test setup. This research shows that the behaviour of studs installed in infill walls without group effects are conservatively predicted by EC-4 and Makino's formula under monotonic shear loading. Furthermore, a reduction factor of 0.70 is recommended to design studs subjected to cyclic shear forces. | es_ES |
dc.description.sponsorship | The present study was supported by the Universitat Politecnica de Valencia (UPV) and the Spanish Ministry of Economy and Competitiveness through Project BIA2015-70651-R and Generalitat Valenciana (GVA) by BEST2018. The authors would like to express their gratitude to Debra Westall for revising the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Construction and Building Materials | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Headed stud | es_ES |
dc.subject | Steel frame | es_ES |
dc.subject | Reinforced concrete infill wall | es_ES |
dc.subject | SRCW | es_ES |
dc.subject | Stud strength | es_ES |
dc.subject | Cyclic shear action | es_ES |
dc.subject | Experimental behaviour | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.conbuildmat.2020.120018 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70651-R/ES/CERRAMIENTOS NO CONVENCIONALES PARA LA PROTECCION DE EDIFICACIONES E INFRAESTRUCTURAS CRITICAS: ATENUACION DE LOS EFECTOS DE ACCIONES SISMICAS Y EXPLOSIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Pallarés Rubio, L.; Aguero Ramón Llin, A.; Martí Vargas, JR.; Pallarés Rubio, FJ. (2020). Behaviour of headed studs subjected to cyclic shear in steel frames with reinforced concrete infill walls. Construction and Building Materials. 262:1-14. https://doi.org/10.1016/j.conbuildmat.2020.120018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.conbuildmat.2020.120018 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 262 | es_ES |
dc.relation.pasarela | S\421630 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Morelli, F., Caprili, S., & Salvatore, W. (2018). Dataset on the cyclic experimental behavior of Steel frames with Reinforced Concrete infill Walls. Data in Brief, 19, 2061-2070. doi:10.1016/j.dib.2018.06.111 | es_ES |
dc.description.references | Morelli, F., Mussini, N., & Salvatore, W. (2018). Influence of shear studs distribution on the mechanical behaviour of dissipative hybrid steel frames with r.c. infill walls. Bulletin of Earthquake Engineering, 17(2), 957-983. doi:10.1007/s10518-018-0475-9 | es_ES |
dc.description.references | Peng, X., & Gu, Q. (2011). Seismic behavior analysis for composite structures of steel frame-reinforced concrete infill wall. The Structural Design of Tall and Special Buildings, 22(11), 831-846. doi:10.1002/tal.724 | es_ES |
dc.description.references | AISC360. Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute for Steel Construction. Chicago, Illinois. 2016 | es_ES |
dc.description.references | ACI318. Building code requirements for structural concrete (ACI318) and commentary (ACI318R). Farmington Hills, Michigan. 2008. | es_ES |
dc.description.references | Comite Euro-International du Beton - CEB. Fastenings to concrete and masonry structures. State of the art report. Bulletin 216, 1994. Telford, London. | es_ES |
dc.description.references | Pallarés, L., & Hajjar, J. F. (2010). Headed steel stud anchors in composite structures, Part I: Shear. Journal of Constructional Steel Research, 66(2), 198-212. doi:10.1016/j.jcsr.2009.08.009 | es_ES |
dc.description.references | Hawkins, N. M., & Mitchell, D. (1984). Seismic Response of Composite Shear Connections. Journal of Structural Engineering, 110(9), 2120-2136. doi:10.1061/(asce)0733-9445(1984)110:9(2120) | es_ES |
dc.description.references | Gattesco, N., & Giuriani, E. (1996). Experimental study on stud shear connectors subjected to cyclic loading. Journal of Constructional Steel Research, 38(1), 1-21. doi:10.1016/0143-974x(96)00007-7 | es_ES |
dc.description.references | Bursi, O S, and Ballerini, M. Behavior of a steel–concrete composite substructure with full and partial. Proceedings of the Eleventh World Congress on Earthquake Engineering. Acapulco: Elsevier. 1996. Paper 771. | es_ES |
dc.description.references | Zandonini, R, and Bursi, O.S. Cyclic behavior of headed shear stud connectors. Edited by J F Hajjar, M Hosain, W S Easterling and B M Shahrooz. Composite construction in steel and concrete IV. Reston: ASCE. 470–482. 2002. | es_ES |
dc.description.references | Civjan, S. A., & Singh, P. (2003). Behavior of Shear Studs Subjected to Fully Reversed Cyclic Loading. Journal of Structural Engineering, 129(11), 1466-1474. doi:10.1061/(asce)0733-9445(2003)129:11(1466) | es_ES |
dc.description.references | Shariati, A., Shariati, M., Ramli Sulong, N. H., Suhatril, M., Arabnejad Khanouki, M. M., & Mahoutian, M. (2014). Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete. Construction and Building Materials, 52, 276-283. doi:10.1016/j.conbuildmat.2013.11.036 | es_ES |
dc.description.references | Shariati, M., Ramli Sulong, N. H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M. M., & Sinaei, H. (2013). Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading. Construction and Building Materials, 38, 582-593. doi:10.1016/j.conbuildmat.2012.07.050 | es_ES |
dc.description.references | Bezerra, L. M., Barbosa, W. C. S., Bonilla, J., & Cavalcante, O. R. O. (2018). Truss-type shear connector for composite steel-concrete beams. Construction and Building Materials, 167, 757-767. doi:10.1016/j.conbuildmat.2018.01.183 | es_ES |
dc.description.references | Eurocode 4, UNE - ENV 1994-1.1. Design of composite steel and concrete structures. Part 1-1: General. Common rules and rules for buildings. AENOR. 2004. | es_ES |
dc.description.references | FEMA-461. Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Redwood City, California. 2007. | es_ES |
dc.description.references | Wang, J., Qi, J., Tong, T., Xu, Q., & Xiu, H. (2019). Static behavior of large stud shear connectors in steel-UHPC composite structures. Engineering Structures, 178, 534-542. doi:10.1016/j.engstruct.2018.07.058 | es_ES |
dc.description.references | Burnet, M. J., & Oehlers, D. J. (2001). FRACTURE OF MECHANICAL SHEAR CONNECTORS IN COMPOSITE BEAMS*. Mechanics of Structures and Machines, 29(1), 1-41. doi:10.1081/sme-100000001 | es_ES |
dc.description.references | Oehlers, D. J., & Coughlan, C. G. (1986). The shear stiffness of stud shear connections in composite beams. Journal of Constructional Steel Research, 6(4), 273-284. doi:10.1016/0143-974x(86)90008-8 | es_ES |
dc.description.references | An, L., & Cederwall, K. (1996). Push-out tests on studs in high strength and normal strength concrete. Journal of Constructional Steel Research, 36(1), 15-29. doi:10.1016/0143-974x(94)00036-h | es_ES |
dc.description.references | Xue, W., Ding, M., Wang, H., & Luo, Z. (2008). Static Behavior and Theoretical Model of Stud Shear Connectors. Journal of Bridge Engineering, 13(6), 623-634. doi:10.1061/(asce)1084-0702(2008)13:6(623) | es_ES |
dc.description.references | Wang, L., Webster, M.D. and Hajjar, J.F. Pushout tests on deconstructable steel-concrete shear connections in sustainable composite beams. Journal of constructional steel research, 153.Elsevier. 2019. 618-637. | es_ES |
dc.description.references | Buttry, K. E. Behaviour of stud connectors in lightweight and normal-weight concrete. M.S. Thesis (unpublished), University of Missouri, USA, August 1965. | es_ES |
dc.description.references | Classen, M. and Hegger, J. Shear-slip behaviour and ductility of composite dowel connectors with pry-out failure. Engineering Structures, 150. Elsevier. 2017. 428-437. | es_ES |
dc.description.references | Makino, M. Design of framed steel structures with infill reinforced concrete walls. Edited by Roeder CW. ASCE. New York: ASCE. 1985. 279-287. | es_ES |
dc.description.references | NEHPR. Recommended Seismic Provisions for New Buildings and Other Structures. 2015 Edition. | es_ES |
dc.description.references | AISC341. Seismic Provisions for Structural Steel Buildings. American Institute for Steel Construction. Chicago, Illinois. 2016. | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |