- -

Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)

Mostrar el registro completo del ítem

Badenes Badenes, B.; Sanner, B.; Mateo Pla, MÁ.; Cuevas, JM.; Bartoli, F.; Ciardelli, F.; González, RM.... (2020). Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs). Energy. 201:1-17. https://doi.org/10.1016/j.energy.2020.117628

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165601

Ficheros en el ítem

Metadatos del ítem

Título: Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)
Autor: Badenes Badenes, Borja Sanner, Burkhard Mateo Pla, Miguel Ángel Cuevas, José Manuel Bartoli, Flavia Ciardelli, Francesco González, Rosa M. Ghafar, Ali Nejad Fontana, Patrick Lemus Zúñiga, Lenin Guillermo Urchueguía Schölzel, Javier Fermín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] One promising way to improve the efficiency of borehole heat exchangers (BHEs) in shallow geothermal applications is to enhance the thermal properties of the materials involved in its construction. Early attempts, ...[+]
Palabras clave: Shallow geothermal energy , Borehole heat exchangers (BHE) , Thermal conductivity , Plastic pipes , Grouting material , Phase-change material (PCM) , Increased efficiency , Cost reduction
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Energy. (issn: 0360-5442 )
DOI: 10.1016/j.energy.2020.117628
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.energy.2020.117628
Título del congreso: Second International Scientific Conference Alternative Energy Sources, Materials and Technologies (AESMT'19)
Lugar del congreso: Sofia, Bulgaria
Fecha congreso: Junio 03-04,2019
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/727583/EU/Advanced materials and processes to improve performance and cost-efficiency of Shallow Geothermal systems and Underground Thermal Storage/
Agradecimientos:
This article is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727583.
Tipo: Artículo Comunicación en congreso

References

Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341-378. doi:10.1016/j.energy.2017.12.037

Li, H., Xu, W., Yu, Z., Wu, J., & Sun, Z. (2017). Application analyze of a ground source heat pump system in a nearly zero energy building in China. Energy, 125, 140-151. doi:10.1016/j.energy.2017.02.108

Ozgener, O. (2010). Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings. Energy, 35(1), 262-268. doi:10.1016/j.energy.2009.09.018 [+]
Alva, G., Lin, Y., & Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341-378. doi:10.1016/j.energy.2017.12.037

Li, H., Xu, W., Yu, Z., Wu, J., & Sun, Z. (2017). Application analyze of a ground source heat pump system in a nearly zero energy building in China. Energy, 125, 140-151. doi:10.1016/j.energy.2017.02.108

Ozgener, O. (2010). Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings. Energy, 35(1), 262-268. doi:10.1016/j.energy.2009.09.018

Jensen, J. K., Ommen, T., Markussen, W. B., & Elmegaard, B. (2017). Design of serially connected district heating heat pumps utilising a geothermal heat source. Energy, 137, 865-877. doi:10.1016/j.energy.2017.03.164

A. C. Crandall, House heating with earth heat pump, Electr World, 126/19, 94-5 (1946).

Moegle, E. (2009). Earth- and buildingsided characteristics of a geothermal energy field with five coaxial tubes erected in 1974 in Schoenaich (County of Boeblingen) – a contribution to history for near-surface geothermic drilling in Europe. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 91, 31-35. doi:10.1127/jmogv/91/2009/31

Lundh, M., & Dalenbäck, J.-O. (2008). Swedish solar heated residential area with seasonal storage in rock: Initial evaluation. Renewable Energy, 33(4), 703-711. doi:10.1016/j.renene.2007.03.024

Ground coupled heat pumps of high technology - groundhit, Funded by FP6-SUSTDEV - sustainable development, global change and ecosystems: thematic priority 6 under the focusing and integrating community research programme 2002-2006. Project ID: 503063.

Go, G.-H., Lee, S.-R., Yoon, S., Park, H., & Park, Sk. (2014). Estimation and experimental validation of borehole thermal resistance. KSCE Journal of Civil Engineering, 18(4), 992-1000. doi:10.1007/s12205-014-0454-x

Zhang, S., Huang, Z., Li, G., Wu, X., Peng, C., & Zhang, W. (2018). Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet. Applied Thermal Engineering, 129, 1348-1357. doi:10.1016/j.applthermaleng.2017.10.042

Fossa, M., & Minchio, F. (2013). The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems. Energy, 51, 323-329. doi:10.1016/j.energy.2012.12.043

SPIN-PET, Via R. Piaggio, 32, 56025, Pontedera ,Italy, http://www.spinpet.it//, [Online; accessed 12-December-2019].

SILMA, Via Lombardia 97/00/101, Poggio a Caiano, Italy, http://www.spinpet.it//, [Online; accessed 12-December-2019].

AIMPLAS, Plastics Technology Centre, Paterna, Spain, https://www.aimplas.net/aimplas/, [Online; accessed 12-December-2019].

CAUDAL - Extruline Systems, Puerto Lumbreras (Murcia), Spain, https://www.caudal.es/index.php/en/, [Online; accessed 12-December-2019].

ASTM C 666: [Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing].

ASTM C 531-85: Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes.

EN 197-1: Cement - Part 1: composition, specifications and conformity criteria for common cements.

EN 445: Grout for prestressing tendons - test methods.

SS 137244: Concrete testing – hardened concrete – scaling at freezing.

RISE Research Institutes of Sweden, Division Samhällsbyggnad – Infrastructure and Concrete Construction, Stockholm, Sweden, https://www.ri.se/sv, [Online; accessed 12-December-2019].

UBeG GbR, Wetzlar, Germany, http://www.ubeg.de. [Online; accessed 12-December-2019].

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem