- -

Degradation of silica particles functionalised with essential oil components under simulated physiological conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Degradation of silica particles functionalised with essential oil components under simulated physiological conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuentes López, Cristina es_ES
dc.contributor.author Ruiz Rico, María es_ES
dc.contributor.author Fuentes López, Ana es_ES
dc.contributor.author Ruiz, María José es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.date.accessioned 2021-04-28T03:32:39Z
dc.date.available 2021-04-28T03:32:39Z
dc.date.issued 2020-11-15 es_ES
dc.identifier.issn 0304-3894 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165734
dc.description.abstract [EN] In this work, the biodurability of three silica particle types (synthetic amourphous silica, MCM-41 microparticles, MCM-41 nanoparticles) functionalised with three different essential oil components (carvacrol, eugenol, vanillin) was studied under conditions that represented the human gastrointestinal tract and lysosomal fluid. The effect of particle type, surface immobilised component and mass quantity on the physico-chemical properties of particles and silicon dissolution was determined. Exposure to biological fluids did not bring about changes in the zeta potential values or particle size distribution of the bare or functionalised materials, but the in vitro digestion process partially degraded the structure of the MCM-41 nanoparticles. Functionalisation preserved the structure of the MCM-41 nanoparticles after simulating an in vitro digestion process, and significantly decreased the amount of silicon dissolved after exposing different particles to both physiological conditions, independently of the essential oil component anchored to their surface. The MCM-41 microparticles showed the highest solubility, while synthetic amorphous silica presented the lowest levels of dissolved silicon. The study of these modified silica particles under physiological conditions could help to predict the toxicological behaviour of these new materials. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support from the Spanish government (Project RTI2018-101599-B-C21 (MCUI/AEI/FEDER, EU)). Cristina Fuentes also thanks the Generalitat Valenciana for being funded by the predoctoral programme VALi+d (ACIF/2016/139). Maria Ruiz-Rico acknowledges the Generalitat Valenciana for her Postdoctoral Fellowship (APOSTD/2019/118). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hazardous Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Silica es_ES
dc.subject MCM-41 es_ES
dc.subject Functionalisation es_ES
dc.subject In vitro digestion es_ES
dc.subject Artificial lysosomal fluid es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Degradation of silica particles functionalised with essential oil components under simulated physiological conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhazmat.2020.123120 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F139/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F118/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Fuentes López, C.; Ruiz Rico, M.; Fuentes López, A.; Ruiz, MJ.; Barat Baviera, JM. (2020). Degradation of silica particles functionalised with essential oil components under simulated physiological conditions. Journal of Hazardous Materials. 339:1-10. https://doi.org/10.1016/j.jhazmat.2020.123120 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jhazmat.2020.123120 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 339 es_ES
dc.identifier.pmid 32937724 es_ES
dc.relation.pasarela S\414883 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references ALOthman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902. doi:10.3390/ma5122874 es_ES
dc.description.references Berg, J. M., Romoser, A., Banerjee, N., Zebda, R., & Sayes, C. M. (2009). The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant toin vitrotoxicological evaluations. Nanotoxicology, 3(4), 276-283. doi:10.3109/17435390903276941 es_ES
dc.description.references Braun, K., Pochert, A., Beck, M., Fiedler, R., Gruber, J., & Lindén, M. (2016). Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. Journal of Sol-Gel Science and Technology, 79(2), 319-327. doi:10.1007/s10971-016-4053-9 es_ES
dc.description.references Cho, W.-S., Duffin, R., Thielbeer, F., Bradley, M., Megson, I. L., MacNee, W., … Donaldson, K. (2012). Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles. Toxicological Sciences, 126(2), 469-477. doi:10.1093/toxsci/kfs006 es_ES
dc.description.references Croissant, J. G., Fatieiev, Y., Almalik, A., & Khashab, N. M. (2017). Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 7(4), 1700831. doi:10.1002/adhm.201700831 es_ES
dc.description.references Diab, R., Canilho, N., Pavel, I. A., Haffner, F. B., Girardon, M., & Pasc, A. (2017). Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science, 249, 346-362. doi:10.1016/j.cis.2017.04.005 es_ES
dc.description.references Fashina, A., Antunes, E., & Nyokong, T. (2013). Silica nanoparticles grafted with phthalocyanines: photophysical properties and studies in artificial lysosomal fluid. New Journal of Chemistry, 37(9), 2800. doi:10.1039/c3nj00439b es_ES
dc.description.references Flynn, J., Mallen, S., Durack, E., O’Connor, P. M., & Hudson, S. P. (2019). Mesoporous matrices for the delivery of the broad spectrum bacteriocin, nisin A. Journal of Colloid and Interface Science, 537, 396-406. doi:10.1016/j.jcis.2018.11.037 es_ES
dc.description.references García-Ríos, E., Ruiz-Rico, M., Guillamón, J. M., Pérez-Esteve, É., & Barat, J. M. (2018). Improved antimicrobial activity of immobilised essential oil components against representative spoilage wine microorganisms. Food Control, 94, 177-186. doi:10.1016/j.foodcont.2018.07.005 es_ES
dc.description.references He, Q., Shi, J., Zhu, M., Chen, Y., & Chen, F. (2010). The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 131(1-3), 314-320. doi:10.1016/j.micromeso.2010.01.009 es_ES
dc.description.references He, Q., Zhang, Z., Gao, F., Li, Y., & Shi, J. (2010). In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PEGylation. Small, 7(2), 271-280. doi:10.1002/smll.201001459 es_ES
dc.description.references Henderson, R. G., Verougstraete, V., Anderson, K., Arbildua, J. J., Brock, T. O., Brouwers, T., … Oller, A. R. (2014). Inter-laboratory validation of bioaccessibility testing for metals. Regulatory Toxicology and Pharmacology, 70(1), 170-181. doi:10.1016/j.yrtph.2014.06.021 es_ES
dc.description.references Izquierdo-Barba, I., Colilla, M., Manzano, M., & Vallet-Regí, M. (2010). In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 132(3), 442-452. doi:10.1016/j.micromeso.2010.03.025 es_ES
dc.description.references Larson, R. (2010). Assessing the Solubility of Silicon Dioxide Particles Using Simulated Lung Fluid”~!2010-05-13~!2010-07-08~!2010-09-02~! The Open Toxicology Journal, 4(1), 51-55. doi:10.2174/1874340401004010051 es_ES
dc.description.references Lin, Y.-S., Abadeer, N., & Haynes, C. L. (2011). Stability of small mesoporous silicananoparticles in biological media. Chem. Commun., 47(1), 532-534. doi:10.1039/c0cc02923h es_ES
dc.description.references Manzano, M., Aina, V., Areán, C. O., Balas, F., Cauda, V., Colilla, M., … Vallet-Regí, M. (2008). Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chemical Engineering Journal, 137(1), 30-37. doi:10.1016/j.cej.2007.07.078 es_ES
dc.description.references McClements, D. J., Xiao, H., & Demokritou, P. (2017). Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 246, 165-180. doi:10.1016/j.cis.2017.05.010 es_ES
dc.description.references Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j es_ES
dc.description.references Oliveira, D. M., & Andrada, A. S. (2019). Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems. Cerâmica, 65(374), 170-179. doi:10.1590/0366-69132019653742509 es_ES
dc.description.references Pennington, J. A. T. (1991). Silicon in foods and diets. Food Additives and Contaminants, 8(1), 97-118. doi:10.1080/02652039109373959 es_ES
dc.description.references Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Llorca, E., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Stability of different mesoporous silica particles during an in vitro digestion. Microporous and Mesoporous Materials, 230, 196-207. doi:10.1016/j.micromeso.2016.05.004 es_ES
dc.description.references Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017 es_ES
dc.description.references Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., Talens, P., Martínez-Máñez, R., & Barat, J. M. (2017). Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: Application in strawberry jam. Food Control, 81, 181-188. doi:10.1016/j.foodcont.2017.06.006 es_ES
dc.description.references Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., & Barat, J. M. (2019). Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT, 113, 108326. doi:10.1016/j.lwt.2019.108326 es_ES
dc.description.references Roelofs, F., & Vogelsberger, W. (2004). Dissolution Kinetics of Synthetic Amorphous Silica in Biological-Like Media and Its Theoretical Description. The Journal of Physical Chemistry B, 108(31), 11308-11316. doi:10.1021/jp048767r es_ES
dc.description.references Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118 es_ES
dc.description.references Sakai-Kato, K., Hidaka, M., Un, K., Kawanishi, T., & Okuda, H. (2014). Physicochemical properties and in vitro intestinal permeability properties and intestinal cell toxicity of silica particles, performed in simulated gastrointestinal fluids. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(3), 1171-1180. doi:10.1016/j.bbagen.2013.12.014 es_ES
dc.description.references Stebounova, L. V., Guio, E., & Grassian, V. H. (2010). Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. Journal of Nanoparticle Research, 13(1), 233-244. doi:10.1007/s11051-010-0022-3 es_ES
dc.description.references Stopford, W., Turner, J., Cappellini, D., & Brock, T. (2003). Bioaccessibility testing of cobalt compounds. Journal of Environmental Monitoring, 5(4), 675. doi:10.1039/b302257a es_ES
dc.description.references Utembe, W., Potgieter, K., Stefaniak, A. B., & Gulumian, M. (2015). Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Particle and Fibre Toxicology, 12(1). doi:10.1186/s12989-015-0088-2 es_ES
dc.description.references Villota, R., Hawkes, J. G., & Cochrane, H. (1986). Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. C R C Critical Reviews in Food Science and Nutrition, 23(4), 289-321. doi:10.1080/10408398609527428 es_ES
dc.description.references Wang, G., Otuonye, A. N., Blair, E. A., Denton, K., Tao, Z., & Asefa, T. (2009). Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study. Journal of Solid State Chemistry, 182(7), 1649-1660. doi:10.1016/j.jssc.2009.03.034 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem