Mostrar el registro sencillo del ítem
dc.contributor.author | Fuentes López, Cristina | es_ES |
dc.contributor.author | Ruiz Rico, María | es_ES |
dc.contributor.author | Fuentes López, Ana | es_ES |
dc.contributor.author | Ruiz, María José | es_ES |
dc.contributor.author | Barat Baviera, José Manuel | es_ES |
dc.date.accessioned | 2021-04-28T03:32:39Z | |
dc.date.available | 2021-04-28T03:32:39Z | |
dc.date.issued | 2020-11-15 | es_ES |
dc.identifier.issn | 0304-3894 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165734 | |
dc.description.abstract | [EN] In this work, the biodurability of three silica particle types (synthetic amourphous silica, MCM-41 microparticles, MCM-41 nanoparticles) functionalised with three different essential oil components (carvacrol, eugenol, vanillin) was studied under conditions that represented the human gastrointestinal tract and lysosomal fluid. The effect of particle type, surface immobilised component and mass quantity on the physico-chemical properties of particles and silicon dissolution was determined. Exposure to biological fluids did not bring about changes in the zeta potential values or particle size distribution of the bare or functionalised materials, but the in vitro digestion process partially degraded the structure of the MCM-41 nanoparticles. Functionalisation preserved the structure of the MCM-41 nanoparticles after simulating an in vitro digestion process, and significantly decreased the amount of silicon dissolved after exposing different particles to both physiological conditions, independently of the essential oil component anchored to their surface. The MCM-41 microparticles showed the highest solubility, while synthetic amorphous silica presented the lowest levels of dissolved silicon. The study of these modified silica particles under physiological conditions could help to predict the toxicological behaviour of these new materials. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support from the Spanish government (Project RTI2018-101599-B-C21 (MCUI/AEI/FEDER, EU)). Cristina Fuentes also thanks the Generalitat Valenciana for being funded by the predoctoral programme VALi+d (ACIF/2016/139). Maria Ruiz-Rico acknowledges the Generalitat Valenciana for her Postdoctoral Fellowship (APOSTD/2019/118). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Hazardous Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Silica | es_ES |
dc.subject | MCM-41 | es_ES |
dc.subject | Functionalisation | es_ES |
dc.subject | In vitro digestion | es_ES |
dc.subject | Artificial lysosomal fluid | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Degradation of silica particles functionalised with essential oil components under simulated physiological conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jhazmat.2020.123120 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F139/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F118/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C21/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Fuentes López, C.; Ruiz Rico, M.; Fuentes López, A.; Ruiz, MJ.; Barat Baviera, JM. (2020). Degradation of silica particles functionalised with essential oil components under simulated physiological conditions. Journal of Hazardous Materials. 339:1-10. https://doi.org/10.1016/j.jhazmat.2020.123120 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jhazmat.2020.123120 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 339 | es_ES |
dc.identifier.pmid | 32937724 | es_ES |
dc.relation.pasarela | S\414883 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | ALOthman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902. doi:10.3390/ma5122874 | es_ES |
dc.description.references | Berg, J. M., Romoser, A., Banerjee, N., Zebda, R., & Sayes, C. M. (2009). The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant toin vitrotoxicological evaluations. Nanotoxicology, 3(4), 276-283. doi:10.3109/17435390903276941 | es_ES |
dc.description.references | Braun, K., Pochert, A., Beck, M., Fiedler, R., Gruber, J., & Lindén, M. (2016). Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. Journal of Sol-Gel Science and Technology, 79(2), 319-327. doi:10.1007/s10971-016-4053-9 | es_ES |
dc.description.references | Cho, W.-S., Duffin, R., Thielbeer, F., Bradley, M., Megson, I. L., MacNee, W., … Donaldson, K. (2012). Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles. Toxicological Sciences, 126(2), 469-477. doi:10.1093/toxsci/kfs006 | es_ES |
dc.description.references | Croissant, J. G., Fatieiev, Y., Almalik, A., & Khashab, N. M. (2017). Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 7(4), 1700831. doi:10.1002/adhm.201700831 | es_ES |
dc.description.references | Diab, R., Canilho, N., Pavel, I. A., Haffner, F. B., Girardon, M., & Pasc, A. (2017). Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science, 249, 346-362. doi:10.1016/j.cis.2017.04.005 | es_ES |
dc.description.references | Fashina, A., Antunes, E., & Nyokong, T. (2013). Silica nanoparticles grafted with phthalocyanines: photophysical properties and studies in artificial lysosomal fluid. New Journal of Chemistry, 37(9), 2800. doi:10.1039/c3nj00439b | es_ES |
dc.description.references | Flynn, J., Mallen, S., Durack, E., O’Connor, P. M., & Hudson, S. P. (2019). Mesoporous matrices for the delivery of the broad spectrum bacteriocin, nisin A. Journal of Colloid and Interface Science, 537, 396-406. doi:10.1016/j.jcis.2018.11.037 | es_ES |
dc.description.references | García-Ríos, E., Ruiz-Rico, M., Guillamón, J. M., Pérez-Esteve, É., & Barat, J. M. (2018). Improved antimicrobial activity of immobilised essential oil components against representative spoilage wine microorganisms. Food Control, 94, 177-186. doi:10.1016/j.foodcont.2018.07.005 | es_ES |
dc.description.references | He, Q., Shi, J., Zhu, M., Chen, Y., & Chen, F. (2010). The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 131(1-3), 314-320. doi:10.1016/j.micromeso.2010.01.009 | es_ES |
dc.description.references | He, Q., Zhang, Z., Gao, F., Li, Y., & Shi, J. (2010). In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: Effects of Particle Size and PEGylation. Small, 7(2), 271-280. doi:10.1002/smll.201001459 | es_ES |
dc.description.references | Henderson, R. G., Verougstraete, V., Anderson, K., Arbildua, J. J., Brock, T. O., Brouwers, T., … Oller, A. R. (2014). Inter-laboratory validation of bioaccessibility testing for metals. Regulatory Toxicology and Pharmacology, 70(1), 170-181. doi:10.1016/j.yrtph.2014.06.021 | es_ES |
dc.description.references | Izquierdo-Barba, I., Colilla, M., Manzano, M., & Vallet-Regí, M. (2010). In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 132(3), 442-452. doi:10.1016/j.micromeso.2010.03.025 | es_ES |
dc.description.references | Larson, R. (2010). Assessing the Solubility of Silicon Dioxide Particles Using Simulated Lung Fluid”~!2010-05-13~!2010-07-08~!2010-09-02~! The Open Toxicology Journal, 4(1), 51-55. doi:10.2174/1874340401004010051 | es_ES |
dc.description.references | Lin, Y.-S., Abadeer, N., & Haynes, C. L. (2011). Stability of small mesoporous silicananoparticles in biological media. Chem. Commun., 47(1), 532-534. doi:10.1039/c0cc02923h | es_ES |
dc.description.references | Manzano, M., Aina, V., Areán, C. O., Balas, F., Cauda, V., Colilla, M., … Vallet-Regí, M. (2008). Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chemical Engineering Journal, 137(1), 30-37. doi:10.1016/j.cej.2007.07.078 | es_ES |
dc.description.references | McClements, D. J., Xiao, H., & Demokritou, P. (2017). Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 246, 165-180. doi:10.1016/j.cis.2017.05.010 | es_ES |
dc.description.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j | es_ES |
dc.description.references | Oliveira, D. M., & Andrada, A. S. (2019). Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems. Cerâmica, 65(374), 170-179. doi:10.1590/0366-69132019653742509 | es_ES |
dc.description.references | Pennington, J. A. T. (1991). Silicon in foods and diets. Food Additives and Contaminants, 8(1), 97-118. doi:10.1080/02652039109373959 | es_ES |
dc.description.references | Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Llorca, E., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Stability of different mesoporous silica particles during an in vitro digestion. Microporous and Mesoporous Materials, 230, 196-207. doi:10.1016/j.micromeso.2016.05.004 | es_ES |
dc.description.references | Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017 | es_ES |
dc.description.references | Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., Talens, P., Martínez-Máñez, R., & Barat, J. M. (2017). Eugenol and thymol immobilised on mesoporous silica-based material as an innovative antifungal system: Application in strawberry jam. Food Control, 81, 181-188. doi:10.1016/j.foodcont.2017.06.006 | es_ES |
dc.description.references | Ribes, S., Ruiz-Rico, M., Pérez-Esteve, É., Fuentes, A., & Barat, J. M. (2019). Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT, 113, 108326. doi:10.1016/j.lwt.2019.108326 | es_ES |
dc.description.references | Roelofs, F., & Vogelsberger, W. (2004). Dissolution Kinetics of Synthetic Amorphous Silica in Biological-Like Media and Its Theoretical Description. The Journal of Physical Chemistry B, 108(31), 11308-11316. doi:10.1021/jp048767r | es_ES |
dc.description.references | Ruiz-Rico, M., Pérez-Esteve, É., Bernardos, A., Sancenón, F., Martínez-Máñez, R., Marcos, M. D., & Barat, J. M. (2017). Enhanced antimicrobial activity of essential oil components immobilized on silica particles. Food Chemistry, 233, 228-236. doi:10.1016/j.foodchem.2017.04.118 | es_ES |
dc.description.references | Sakai-Kato, K., Hidaka, M., Un, K., Kawanishi, T., & Okuda, H. (2014). Physicochemical properties and in vitro intestinal permeability properties and intestinal cell toxicity of silica particles, performed in simulated gastrointestinal fluids. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(3), 1171-1180. doi:10.1016/j.bbagen.2013.12.014 | es_ES |
dc.description.references | Stebounova, L. V., Guio, E., & Grassian, V. H. (2010). Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. Journal of Nanoparticle Research, 13(1), 233-244. doi:10.1007/s11051-010-0022-3 | es_ES |
dc.description.references | Stopford, W., Turner, J., Cappellini, D., & Brock, T. (2003). Bioaccessibility testing of cobalt compounds. Journal of Environmental Monitoring, 5(4), 675. doi:10.1039/b302257a | es_ES |
dc.description.references | Utembe, W., Potgieter, K., Stefaniak, A. B., & Gulumian, M. (2015). Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Particle and Fibre Toxicology, 12(1). doi:10.1186/s12989-015-0088-2 | es_ES |
dc.description.references | Villota, R., Hawkes, J. G., & Cochrane, H. (1986). Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. C R C Critical Reviews in Food Science and Nutrition, 23(4), 289-321. doi:10.1080/10408398609527428 | es_ES |
dc.description.references | Wang, G., Otuonye, A. N., Blair, E. A., Denton, K., Tao, Z., & Asefa, T. (2009). Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study. Journal of Solid State Chemistry, 182(7), 1649-1660. doi:10.1016/j.jssc.2009.03.034 | es_ES |