- -

Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Correia, Daniela M. es_ES
dc.contributor.author Costa, Carlos M. es_ES
dc.contributor.author Rodriguez-Hernandez, Jose-Carlos es_ES
dc.contributor.author Tort-Ausina, Isabel es_ES
dc.contributor.author Teruel Biosca, Laura es_ES
dc.contributor.author Torregrosa Cabanilles, Constantino es_ES
dc.contributor.author Meseguer Dueñas, José María es_ES
dc.contributor.author Lanceros-Méndez, Senentxu es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2021-04-30T03:31:30Z
dc.date.available 2021-04-30T03:31:30Z
dc.date.issued 2020-08-05 es_ES
dc.identifier.issn 1528-7483 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165800
dc.description.abstract [EN] The crystallization kinetics of poly(vinylidene fluoride) (PVDF) in blends with the ionic liquid (IL) 1-ethyl-3-methylimidazolium chloride [Emim][Cl] has been studied as a function of [Emim][Cl] content up to 40 wt %. Blends were produced by a solvent casting technique from diluted solutions and solvent evaporation at a temperature higher than the melting point of PVDF followed by cooling to room temperature. Polymer phase, morphology, and crystallization behavior were evaluated. When the molten blend was crystallized from the melt, it was observed that [Emim][Cl] induces nucleation of PVDF in the electroactive and highly polar beta-crystalline phase, while pure PVDF crystallizes in the a phase with the same thermal treatments. It is shown that PVDF crystal growth segregates an amorphous phase rich in IL molecules to the surface of the films and that the IL also remains in the spaces between the lamellae or between spherulites as demonstrated by scanning electronic microscopy (SEM) and polarizing optical microscope (POM) images. Differential scanning calorimetry results of isothermal crystallization show the dependence of equilibrium melting temperature and the Avrami exponent with the [Emim][Cl] content. es_ES
dc.description.sponsorship This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2020. The authors thank FEDER funds through the COMPETE 2020 Programme and National Funds through FCT under the Projects PTDC/BTM-MAT/28237/2017, PTDC/EMD-EMD/28159/2017, and PTDC/FIS-MAC/28157/2017. D.M.C. and C.M.C. also thank to the FCT for grants SFRH/BPD/121526/2016 and SFRH/BPD/112547/2015, respectively. Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the Project MAT2016-76039-C4-1 -R (AEI/FEDER, UE) (including the FEDER financial support), from the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZ-ITEK, and PIBA (PIBA-2018-06) programs, respectively, are acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Crystal Growth & Design es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Salts es_ES
dc.subject Melting es_ES
dc.subject Crystallization es_ES
dc.subject Fluoropolymers es_ES
dc.subject Solvents es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.cgd.0c00042 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/3599-PPCDT/121526/PT/Heterometallic Metal-organic Frameworks: Smart Materials for Advanced Applications/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F28159%2F2006/PT/MOLECULAR MECHANISM OF HEALING, REPAIR AND REGENERATION IN VERTEBRATES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04650%2F2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F121526%2F2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-MAC%2F28157%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PTDC%2FEMD-EMD%2F28159%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PTDC%2FBTM-MAT%2F28237%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//PIBA-2018-06/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C41/ES/MICROGELES BIOMIMETICOS PARA EL ESTUDIO DE LA GENERACION DE RESISTENCIAS A FARMACOS EN EL MIELOMA MULTIPLE./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Correia, DM.; Costa, CM.; Rodriguez-Hernandez, J.; Tort-Ausina, I.; Teruel Biosca, L.; Torregrosa Cabanilles, C.; Meseguer Dueñas, JM.... (2020). Effect of Ionic Liquid Content on the Crystallization Kinetics and Morphology of Semicrystalline Poly(vinylidene Fluoride)/Ionic Liquid Blends. Crystal Growth & Design. 20(8):4967-4979. https://doi.org/10.1021/acs.cgd.0c00042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.cgd.0c00042 es_ES
dc.description.upvformatpinicio 4967 es_ES
dc.description.upvformatpfin 4979 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\424137 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Drossel, W.-G., Meinel, F., Bucht, A., & Kunze, H. (2018). Smart materials for smart production – a cross-disciplinary innovation network in the field of smart materials. Procedia Manufacturing, 21, 197-204. doi:10.1016/j.promfg.2018.02.111 es_ES
dc.description.references Correia, D. M., Barbosa, J. C., Costa, C. M., Reis, P. M., Esperança, J. M. S. S., de Zea Bermudez, V., & Lanceros-Méndez, S. (2019). Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuators. The Journal of Physical Chemistry C, 123(20), 12744-12752. doi:10.1021/acs.jpcc.9b00868 es_ES
dc.description.references Bauer, S., & Bauer, F. (2008). Piezoelectric Polymers and Their Applications. Springer Series in Materials Science, 157-177. doi:10.1007/978-3-540-68683-5_6 es_ES
dc.description.references Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006 es_ES
dc.description.references Mejri, R., Dias, J. C., Besbes Hentati, S., Botelho, G., Esperança, J. M. S. S., Costa, C. M., & Lanceros- Mendez, S. (2016). Imidazolium-based ionic liquid type dependence of the bending response of polymer actuators. European Polymer Journal, 85, 445-451. doi:10.1016/j.eurpolymj.2016.10.052 es_ES
dc.description.references Correia, D. M., Sabater i Serra, R., Gómez Tejedor, J. A., de Zea Bermudez, V., Andrio Balado, A., Meseguer-Dueñas, J. M., … Costa, C. M. (2018). Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer, 143, 164-172. doi:10.1016/j.polymer.2018.04.019 es_ES
dc.description.references Hu, Y., Kang, W., Fang, Y., Xie, L., Qiu, L., & Jin, T. (2018). Piezoelectric Poly(vinylidene fluoride) (PVDF) Polymer-Based Sensor for Wrist Motion Signal Detection. Applied Sciences, 8(5), 836. doi:10.3390/app8050836 es_ES
dc.description.references Barbosa, J., Dias, J., Lanceros-Méndez, S., & Costa, C. (2018). Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators. Membranes, 8(3), 45. doi:10.3390/membranes8030045 es_ES
dc.description.references Liu, J., Wang, C., Wu, X., Zhu, F., Liu, M., & Xi, Y. (2018). An enhanced poly(vinylidene fluoride) matrix separator with TEOS for good performance lithium-ion batteries. Journal of Solid State Electrochemistry, 23(1), 277-284. doi:10.1007/s10008-018-4126-5 es_ES
dc.description.references Tandon, B., Kamble, P., Olsson, R., Blaker, J., & Cartmell, S. (2019). Fabrication and Characterisation of Stimuli Responsive Piezoelectric PVDF and Hydroxyapatite-Filled PVDF Fibrous Membranes. Molecules, 24(10), 1903. doi:10.3390/molecules24101903 es_ES
dc.description.references Cardoso, V., Correia, D., Ribeiro, C., Fernandes, M., & Lanceros-Méndez, S. (2018). Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers, 10(2), 161. doi:10.3390/polym10020161 es_ES
dc.description.references Correia, D. M., Martins, P., Tariq, M., Esperança, J. M. S. S., & Lanceros-Méndez, S. (2018). Low-field giant magneto-ionic response in polymer-based nanocomposites. Nanoscale, 10(33), 15747-15754. doi:10.1039/c8nr03259a es_ES
dc.description.references Fernandes, L. C., Correia, D. M., García-Astrain, C., Pereira, N., Tariq, M., Esperança, J. M. S. S., & Lanceros-Méndez, S. (2019). Ionic-Liquid-Based Printable Materials for Thermochromic and Thermoresistive Applications. ACS Applied Materials & Interfaces, 11(22), 20316-20324. doi:10.1021/acsami.9b00645 es_ES
dc.description.references Fernandes, L. C., Correia, D. M., Pereira, N., Tubio, C. R., & Lanceros-Méndez, S. (2019). Highly Sensitive Humidity Sensor Based on Ionic Liquid–Polymer Composites. ACS Applied Polymer Materials, 1(10), 2723-2730. doi:10.1021/acsapm.9b00675 es_ES
dc.description.references Ye, Y.-S., Rick, J., & Hwang, B.-J. (2013). Ionic liquid polymer electrolytes. J. Mater. Chem. A, 1(8), 2719-2743. doi:10.1039/c2ta00126h es_ES
dc.description.references Correia, D. M., Costa, C. M., Lizundia, E., Sabater i Serra, R., Gómez-Tejedor, J. A., Biosca, L. T., … Lanceros-Méndez, S. (2019). Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. The Journal of Physical Chemistry C, 123(45), 27917-27926. doi:10.1021/acs.jpcc.9b07986 es_ES
dc.description.references Xing, C., Zhao, M., Zhao, L., You, J., Cao, X., & Li, Y. (2013). Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polymer Chemistry, 4(24), 5726. doi:10.1039/c3py00466j es_ES
dc.description.references Mago, G., Fisher, F., & Kalyon, D. (2009). Deformation-Induced Crystallization and Associated Morphology Development of Carbon Nanotube-PVDF Nanocomposites. Journal of Nanoscience and Nanotechnology, 9(5), 3330-3340. doi:10.1166/jnn.2009.vc08 es_ES
dc.description.references Lopes, A. C., Ferreira, J. C. C., Costa, C. M., & Lanceros-Méndez, S. (2013). Crystallization kinetics of montmorillonite/poly(vinylidene fluoride) composites and its correlation with the crystalline polymer phase formation. Thermochimica Acta, 574, 19-25. doi:10.1016/j.tca.2013.08.003 es_ES
dc.description.references Sencadas, V., Martins, P., Pitães, A., Benelmekki, M., Gómez Ribelles, J. L., & Lanceros-Mendez, S. (2011). Influence of Ferrite Nanoparticle Type and Content on the Crystallization Kinetics and Electroactive Phase Nucleation of Poly(vinylidene fluoride). Langmuir, 27(11), 7241-7249. doi:10.1021/la2008864 es_ES
dc.description.references Abolhasani, M. M., Rezaei Abadchi, M., Magniez, K., & Guo, Q. (2014). Different thermal analysis technique application in determination of fold surface-free energy. Journal of Thermal Analysis and Calorimetry, 119(1), 527-536. doi:10.1007/s10973-014-4121-8 es_ES
dc.description.references Xu, P., Fu, W., Cui, Z., & Ding, Y. (2018). Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment. Applied Surface Science, 444, 480-484. doi:10.1016/j.apsusc.2018.02.242 es_ES
dc.description.references Bahader, A., Haoguan, G., Nawaz, M., Bangesh, M., Bangesh, F., Ibrar, M., & Yunsheng, D. (2019). Impact of ionic liquid’s self-assembly on the crystallization behavior of poly (vinylidene fluoride). Journal of Molecular Liquids, 276, 115-119. doi:10.1016/j.molliq.2018.11.145 es_ES
dc.description.references Roy, A., Dutta, B., & Bhattacharya, S. (2016). Electroactive phase nucleation and non-isothermal crystallization kinetics study in [DEMM][TFSI] ionic liquid incorporated P(VDF-HFP) co-polymer membranes. Journal of Materials Science, 51(17), 7814-7830. doi:10.1007/s10853-016-9978-4 es_ES
dc.description.references Zhang, H., Shi, W., Cheng, H., Chen, S., & Wang, L. (2018). Effect of ionic liquid on crystallization kinetics and crystal form transition of poly(vinylidene fluoride) blends. Journal of Thermal Analysis and Calorimetry, 132(2), 1153-1165. doi:10.1007/s10973-018-7029-x es_ES
dc.description.references Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157 es_ES
dc.description.references Efimova, A., Pfützner, L., & Schmidt, P. (2015). Thermal stability and decomposition mechanism of 1-ethyl-3-methylimidazolium halides. Thermochimica Acta, 604, 129-136. doi:10.1016/j.tca.2015.02.001 es_ES
dc.description.references Cai, X., Lei, T., Sun, D., & Lin, L. (2017). A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Advances, 7(25), 15382-15389. doi:10.1039/c7ra01267e es_ES
dc.description.references Dharaskar, S. A., Varma, M. N., Shende, D. Z., Yoo, C. K., & Wasewar, K. L. (2013). Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel. The Scientific World Journal, 2013, 1-9. doi:10.1155/2013/395274 es_ES
dc.description.references Martins, P., Costa, C. M., Benelmekki, M., Botelho, G., & Lanceros-Mendez, S. (2012). On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm, 14(8), 2807. doi:10.1039/c2ce06654h es_ES
dc.description.references Dias, J. C., Martins, M. S., Ribeiro, S., Silva, M. M., Esperança, J. M. S. S., Ribeiro, C., … Lanceros-Mendez, S. (2016). Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]. Journal of Materials Science, 51(20), 9490-9503. doi:10.1007/s10853-016-0193-0 es_ES
dc.description.references Gregorio, R. (2006). Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 100(4), 3272-3279. doi:10.1002/app.23137 es_ES
dc.description.references Sencadas, V., Costa, C. M., Gómez Ribelles, J. L., & Lanceros-Mendez, S. (2009). Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 45(5), 1328-1335. doi:10.1007/s10853-009-4086-3 es_ES
dc.description.references Mancarella, C., & Martuscelli, E. (1977). Crystallization kinetics of poly(vinylidene fluoride). Polymer, 18(12), 1240-1242. doi:10.1016/0032-3861(77)90286-5 es_ES
dc.description.references Ducharme, S., Bune, A. V., Blinov, L. M., Fridkin, V. M., Palto, S. P., Sorokin, A. V., & Yudin, S. G. (1998). Critical point in ferroelectric Langmuir-Blodgett polymer films. Physical Review B, 57(1), 25-28. doi:10.1103/physrevb.57.25 es_ES
dc.description.references Hoffman, J. D., & Weeks, J. J. (1962). Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 66A(1), 13. doi:10.6028/jres.066a.003 es_ES
dc.description.references Sajkiewicz, P. (1999). Crystallization behaviour of poly(vinylidene fluoride). European Polymer Journal, 35(9), 1581-1590. doi:10.1016/s0014-3057(98)00242-0 es_ES
dc.description.references Flory, P. J., & Yoon, D. Y. (1978). Molecular morphology in semicrystalline polymers. Nature, 272(5650), 226-229. doi:10.1038/272226a0 es_ES
dc.description.references Avrami, M. (1941). Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. The Journal of Chemical Physics, 9(2), 177-184. doi:10.1063/1.1750872 es_ES
dc.description.references Avrami, M. (1939). Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics, 7(12), 1103-1112. doi:10.1063/1.1750380 es_ES
dc.description.references Avrami, M. (1940). Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei. The Journal of Chemical Physics, 8(2), 212-224. doi:10.1063/1.1750631 es_ES
dc.description.references Lorenzo, A. T., Arnal, M. L., Albuerne, J., & Müller, A. J. (2007). DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polymer Testing, 26(2), 222-231. doi:10.1016/j.polymertesting.2006.10.005 es_ES
dc.description.references Tamaño‐Machiavello, M. N., Costa, C. M., Romero‐Colomer, F. J., María Meseguer Dueñas, J., Lanceros‐Mendez, S., & Luis Gómez Ribelles, J. (2017). Crystallization kinetics of poly(ethylene oxide) confined in semicrystalline poly(vinylidene) fluoride. Journal of Polymer Science Part B: Polymer Physics, 56(7), 588-597. doi:10.1002/polb.24564 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem