- -

Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramón, J.E. es_ES
dc.contributor.author Gandía-Romero, Jose M. es_ES
dc.contributor.author Bataller Prats, Román es_ES
dc.contributor.author Alcañiz Fillol, Miguel es_ES
dc.contributor.author Valcuende Payá, Manuel Octavio es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.date.accessioned 2021-05-04T03:31:47Z
dc.date.available 2021-05-04T03:31:47Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0958-9465 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165901
dc.description.abstract [EN] This paper presents a Potentiostatic Step Voltammetry approach to corrosion rate measurement of reinforcements in concrete. We have termed this approach PSV-TE since it is based on the Tafel extrapolation method, but with the added advantage that long and slow potentiodynamic scans are no longer required to obtain the Tafel slopes. In this way, the irreversible polarization of rebars is prevented, so PSV-TE is considered to be a non-destructive method. The Tafel slopes are obtained by fitting the current-time response of the system to a theoretical model which we have outlined and validated previously. In this way, the concrete's electrical resistance and double layer capacity are also obtained. In this study, the optimal PSV-TE design has been established and validated on a range of reinforced concrete specimens. Results show minimal deviation between PSV-TE and reference methods. Therefore, PSV-TE is part of the corrosion monitoring system we have patented. es_ES
dc.description.sponsorship This work was supported by a pre-doctoral scholarship granted to Jose Enrique Ramon Zamora by the Spanish Ministry of Science and Innovation [grant number FPU13/00911]. We would also like to acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the national program of oriented research, development and innovation to societal challenges [project number BIA2016-78460-C3-3-R]. The research activity reported in this paper has been performed in the framework of the ReSHEALience project which has received funding from the European Union's Horizon 2020 research and innovation program [number 760824]. We extend our appreciation to Rafa Calabuig and Jesus Martinez, Material Laboratory technicians of the ETSIE of the Universitat Politecnica de Valencia, for their invaluable cooperation in the experimental work. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Cement and Concrete Composites es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Potential step voltammetry es_ES
dc.subject Non-destructive technique es_ES
dc.subject Steel corrosion es_ES
dc.subject Reinforced concrete es_ES
dc.subject Durability es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cemconcomp.2020.103590 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/760824/EU/Rethinking coastal defence and Green-Energy Service infrastructures through enHancEd-durAbiLIty high-performance fiber reinforced cement-based materials./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F00911/ES/FPU13%2F00911/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2016-78460-C3-3-R/ES/DURABILIDAD Y VIDA UTIL DEL HORMIGON DE MUY ALTO RENDIMIENTO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Ramón, J.; Gandía-Romero, JM.; Bataller Prats, R.; Alcañiz Fillol, M.; Valcuende Payá, MO.; Soto Camino, J. (2020). Potential step voltammetry: An approach to corrosion rate measurement of reinforcements in concrete. Cement and Concrete Composites. 110:1-12. https://doi.org/10.1016/j.cemconcomp.2020.103590 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cemconcomp.2020.103590 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 110 es_ES
dc.relation.pasarela S\408259 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Mansfeld, F. (1976). The Polarization Resistance Technique for Measuring Corrosion Currents. Advances in Corrosion Science and Technology, 163-262. doi:10.1007/978-1-4684-8986-6_3 es_ES
dc.description.references Andrade, C., & González, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Materials and Corrosion, 29(8), 515-519. doi:10.1002/maco.19780290804 es_ES
dc.description.references Chang, Z.-T., Cherry, B., & Marosszeky, M. (2008). Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: Experimental measurement of polarisation curves of steel in concrete. Corrosion Science, 50(2), 357-364. doi:10.1016/j.corsci.2007.08.009 es_ES
dc.description.references Stern, M., & Geaby, A. L. (1957). Electrochemical Polarization. Journal of The Electrochemical Society, 104(1), 56. doi:10.1149/1.2428496 es_ES
dc.description.references González, J. A., Albéniz, J., & Feliu, S. (1996). Valores de la constante B del método de resistencia de polarización para veinte sistemas metal-medio diferentes. Revista de Metalurgia, 32(1), 10-17. doi:10.3989/revmetalm.1996.v32.i1.926 es_ES
dc.description.references González, J. A., Molina, A., Escudero, M. L., & Andrade, C. (1985). Errors in the electrochemical evaluation of very small corrosion rates—I. polarization resistance method applied to corrosion of steel in concrete. Corrosion Science, 25(10), 917-930. doi:10.1016/0010-938x(85)90021-6 es_ES
dc.description.references Scully, J. R. (2000). Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. CORROSION, 56(2), 199-218. doi:10.5006/1.3280536 es_ES
dc.description.references Bastidas, D. M., González, J. A., Feliu, S., Cobo, A., & Miranda, J. M. (2007). A Quantitative Study of Concrete-Embedded Steel Corrosion Using Potentiostatic Pulses. CORROSION, 63(12), 1094-1100. doi:10.5006/1.3278327 es_ES
dc.description.references Glass, G. K., Page, C. L., Short, N. R., & Zhang, J.-Z. (1997). The analysis of potentiostatic transients applied to the corrosion of steel in concrete. Corrosion Science, 39(9), 1657-1663. doi:10.1016/s0010-938x(97)00071-1 es_ES
dc.description.references Feliu, V., González, J. A., & Feliu, S. (2007). Corrosion estimates from the transient response to a potential step. Corrosion Science, 49(8), 3241-3255. doi:10.1016/j.corsci.2007.03.004 es_ES
dc.description.references Andrade, C., Soler, L., Alonso, C., Nóvoa, X. R., & Keddam, M. (1995). The importance of geometrical considerations in the measurement of steel corrosion in concrete by means of AC impedance. Corrosion Science, 37(12), 2013-2023. doi:10.1016/0010-938x(95)00095-2 es_ES
dc.description.references Barnartt, S. (1970). Two-point and three-point methods for the investigation of electrode reaction mechanisms. Electrochimica Acta, 15(8), 1313-1324. doi:10.1016/0013-4686(70)80051-2 es_ES
dc.description.references Bandy, R. (1980). The simultaneous determination of tafel constants and corrosion rate—a new method. Corrosion Science, 20(8-9), 1017-1028. doi:10.1016/0010-938x(80)90081-5 es_ES
dc.description.references Beleevskii, V. S., Konev, K. A., Novosadov, V. V., & Vasil’ev, V. Y. (2004). Estimating Corrosion Current and Tafel Constants from the Curvature of Voltammetric Curves Near the Free-Corrosion Potential. Protection of Metals, 40(6), 566-569. doi:10.1023/b:prom.0000049521.65336.25 es_ES
dc.description.references Oldham, K. B., & Mansfeld, F. (1973). Corrosion rates from polarization curves: A new method. Corrosion Science, 13(10), 813-819. doi:10.1016/s0010-938x(73)80021-6 es_ES
dc.description.references Kanno, K., Suzuki, M., & Sato, Y. (1980). Tafel slope determination of corrosion reaction by the coulostatic method. Corrosion Science, 20(8-9), 1059-1066. doi:10.1016/0010-938x(80)90084-0 es_ES
dc.description.references MANSFELD, F. (1973). Tafel Slopes and Corrosion Rates from Polarization Resistance Measurements. Corrosion, 29(10), 397-402. doi:10.5006/0010-9312-29.10.397 es_ES
dc.description.references Rocchini, G. (1995). The determination of tafel slopes by the successive approximation method. Corrosion Science, 37(6), 987-1003. doi:10.1016/0010-938x(95)00009-9 es_ES
dc.description.references Mansfeld, F. (2005). Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corrosion Science, 47(12), 3178-3186. doi:10.1016/j.corsci.2005.04.012 es_ES
dc.description.references Campos, I., Alcañiz, M., Masot, R., Soto, J., Martínez-Máñez, R., Vivancos, J.-L., & Gil, L. (2012). A method of pulse array design for voltammetric electronic tongues. Sensors and Actuators B: Chemical, 161(1), 556-563. doi:10.1016/j.snb.2011.10.075 es_ES
dc.description.references Martínez-Bisbal, M. C., Loeff, E., Olivas, E., Carbó, N., García-Castillo, F. J., López-Carrero, J., … Soto, J. (2017). A Voltammetric Electronic Tongue for the Quantitative Analysis of Quality Parameters in Wastewater. Electroanalysis, 29(4), 1147-1153. doi:10.1002/elan.201600717 es_ES
dc.description.references Sobrino-Gregorio, L., Bataller, R., Soto, J., & Escriche, I. (2018). Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue. Food Control, 91, 254-260. doi:10.1016/j.foodcont.2018.04.003 es_ES
dc.description.references Ramón, J. E., Martínez-Ibernón, A., Gandía-Romero, J. M., Fraile, R., Bataller, R., Alcañiz, M., … Soto, J. (2019). Characterization of electrochemical systems using potential step voltammetry. Part I: Modeling by means of equivalent circuits. Electrochimica Acta, 323, 134702. doi:10.1016/j.electacta.2019.134702 es_ES
dc.description.references Martínez-Ibernón, A., Ramón, J. E., Gandía-Romero, J. M., Gasch, I., Valcuende, M., Alcañiz, M., & Soto, J. (2019). Characterization of electrochemical systems using potential step voltammetry. Part II: Modeling of reversible systems. Electrochimica Acta, 328, 135111. doi:10.1016/j.electacta.2019.135111 es_ES
dc.description.references M. Alcañiz, R. Bataller, J.M. Gandía-Romero, J.E. Ramón, J. Soto, M. Valcuende, Sensor, red de sensores, método y programa informático para determinar la corrosión en una estructura de hormigón armado, invention patent No. ES2545669, Publication date 19 de January 2016. es_ES
dc.description.references Rodríguez, P., Ramírez, E., & González, J. A. (1994). Methods for studying corrosion in reinforced concrete. Magazine of Concrete Research, 46(167), 81-90. doi:10.1680/macr.1994.46.167.81 es_ES
dc.description.references Feliu, S., Gonzalez, J. A., Andrade, C., & Feliu, V. (1986). The determination of the corrosion rate of steel in concrete by a non-stationary method. Corrosion Science, 26(11), 961-970. doi:10.1016/0010-938x(86)90086-7 es_ES
dc.description.references Feliu, V., González, J. ., Andrade, C., & Feliu, S. (1998). Equivalent circuit for modelling the steel-concrete interface. I. experimental evidence and theoretical predictions. Corrosion Science, 40(6), 975-993. doi:10.1016/s0010-938x(98)00036-5 es_ES
dc.description.references Song, G. (2000). Theoretical analysis of the measurement of polarisation resistance in reinforced concrete. Cement and Concrete Composites, 22(6), 407-415. doi:10.1016/s0958-9465(00)00040-8 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem