- -

Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Del Campo Huertas, Pablo es_ES
dc.contributor.author Navarro Villalba, Mª Teresa es_ES
dc.contributor.author Shaikh, Sohel K. es_ES
dc.contributor.author Khokhar, Munir D. es_ES
dc.contributor.author Aljumah, Furqan es_ES
dc.contributor.author Martínez, Cristina es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-05-07T03:32:30Z
dc.date.available 2021-05-07T03:32:30Z
dc.date.issued 2020-10-16 es_ES
dc.identifier.issn 2155-5435 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166063
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c02799 es_ES
dc.description.abstract [EN] Among the possible on-purpose technologies for propene production, direct conversion of butene-rich fractions to propene represents an attractive alternative to conventional routes such as steam cracking or fluid catalytic cracking. Here, we present an approach for designing an efficient ZSM-5-based catalyst for the selective cracking of butenes to propene by properly balancing diffusional and compositional effects. Instead of the large coffin-shaped ZSM-5 crystallites with very high Si/Al ratios generally reported, the optimal catalyst in terms of propene selectivity and catalyst life was found to be a ZSM-5 zeolite with a squared morphology, submicron-sized crystals (0.8 x 0.3 x 1.0 mu m), and a Si/Al molar ratio of around 300. For this crystal conformation, the short dimensions of both sinusoidal and straight channels facilitate propene diffusion and reduce its consumption in consecutive reactions, limiting the formation of C5+ oligomers and aromatics and maximizing propene selectivity. Coffin-type ZSM-5 crystals, with higher diffusional restrictions than square-shaped crystals, show faster catalyst deactivation than the latter, independently of the crystal size and Al content. However, among the ZSM-5 zeolite crystallites with a coffin morphology, the one presenting intergrowths on the (010) face, with a larger proportion of sinusoidal channels, shows a lower aromatic selectivity and deactivation rate, whereas the other two, with straight channels open to the clean (010) faces, favor the formation of aromatics by direct cyclization-dehydrogenation of oligomeric intermediates. es_ES
dc.description.sponsorship This work has been supported by Saudi Aramco, by the Spanish Government-MICINN through "Severo Ochoa" (SEV-2016-0683) and RTI2018-101033-B-I00, and by Generalitat Valenciana (AICO/2019/060). We thank the Electron Microscopy Service of the UPV for their help in sample characterization. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Butene catalytic cracking es_ES
dc.subject Propene es_ES
dc.subject ZSM-5 zeolite es_ES
dc.subject Crystallite size es_ES
dc.subject Morphology es_ES
dc.subject Zeolite composition es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscatal.0c02799 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F060/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Del Campo Huertas, P.; Navarro Villalba, MT.; Shaikh, SK.; Khokhar, MD.; Aljumah, F.; Martínez, C.; Corma Canós, A. (2020). Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts. ACS Catalysis. 10(20):11878-11891. https://doi.org/10.1021/acscatal.0c02799 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscatal.0c02799 es_ES
dc.description.upvformatpinicio 11878 es_ES
dc.description.upvformatpfin 11891 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\430943 es_ES
dc.contributor.funder Saudi Aramco es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agency, I. E. The Future of Petrochemicals: Towards More Sustainable Plastics and Fertilisers; IEA Publications: France, 2018, http://www.iea.org (accessed February 2020). es_ES
dc.description.references Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435-437. doi:10.1038/532435a es_ES
dc.description.references Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092 es_ES
dc.description.references Jordá, J. L., Rey, F., Sastre, G., Valencia, S., Palomino, M., Corma, A., … Rodríguez-Velamazán, J. A. (2013). Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process. Angewandte Chemie International Edition, 52(40), 10458-10462. doi:10.1002/anie.201305230 es_ES
dc.description.references Gutiérrez-Sevillano, J. J., Dubbeldam, D., Rey, F., Valencia, S., Palomino, M., Martín-Calvo, A., & Calero, S. (2010). Analysis of the ITQ-12 Zeolite Performance in Propane−Propylene Separations Using a Combination of Experiments and Molecular Simulations. The Journal of Physical Chemistry C, 114(35), 14907-14914. doi:10.1021/jp101744k es_ES
dc.description.references Palomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358g es_ES
dc.description.references Blay, V., Miguel, P. J., & Corma, A. (2017). Theta-1 zeolite catalyst for increasing the yield of propene when cracking olefins and its potential integration with an olefin metathesis unit. Catalysis Science & Technology, 7(24), 5847-5859. doi:10.1039/c7cy01502j es_ES
dc.description.references Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M. S., & Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology, 7(1), 12-46. doi:10.1039/c6cy01886f es_ES
dc.description.references Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178 es_ES
dc.description.references Al-Khattaf, S. S.; Palani, A.; Bhuiyan, T. I.; Shaikh, S.; Akhtar, M. N.; Aitani, A. M.; Al-Yami, M. A. Dual Catalyst System for Propene Production. U.S. Patent 10,052,618 B2, 2018. es_ES
dc.description.references Alshafei, F. H.; Khokhar, M. D.; Sulais, N. A.; Alalouni, M. R.; Shaikh, S. K. Multiple-Stage Catalyst System for Self-Metathesis with Controlled Isomerization and Cracking. U.S. Patent 2018/0,208,524 A1, 2018. es_ES
dc.description.references Khokhar, M. D.; Alshafei, F. H.; Sulais, N. A.; Shaikh, S. K.; Abudawoud, R. H. Dual Catalyst Processes and Systems for Propene Production. U.S. Patent 10,329,225 B2, 2019. es_ES
dc.description.references Shaikh, S.; Jamal, A.; Zhang, Z. Systems and Methods for Producing Propene. U.S. Patent 9,834,497 B2, 2017. es_ES
dc.description.references Arudra, P., Bhuiyan, T. I., Akhtar, M. N., Aitani, A. M., Al-Khattaf, S. S., & Hattori, H. (2014). Silicalite-1 As Efficient Catalyst for Production of Propene from 1-Butene. ACS Catalysis, 4(11), 4205-4214. doi:10.1021/cs5009255 es_ES
dc.description.references Lin, L., Qiu, C., Zhuo, Z., Zhang, D., Zhao, S., Wu, H., … He, M. (2014). Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. Journal of Catalysis, 309, 136-145. doi:10.1016/j.jcat.2013.09.011 es_ES
dc.description.references ZHAO, G., TENG, J., XIE, Z., JIN, W., YANG, W., CHEN, Q., & TANG, Y. (2007). Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. Journal of Catalysis, 248(1), 29-37. doi:10.1016/j.jcat.2007.02.027 es_ES
dc.description.references Blay, V., Epelde, E., Miravalles, R., & Perea, L. A. (2018). Converting olefins to propene: Ethene to propene and olefin cracking. Catalysis Reviews, 60(2), 278-335. doi:10.1080/01614940.2018.1432017 es_ES
dc.description.references Shi, J., Wang, Y., Yang, W., Tang, Y., & Xie, Z. (2015). Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 44(24), 8877-8903. doi:10.1039/c5cs00626k es_ES
dc.description.references Zhao, G.-L., Teng, J.-W., Xie, Z.-K., Yang, W.-M., Chen, Q.-L., & Tang, Y. (2007). Catalytic cracking reactions of C4-olefin over zeolites H-ZSM-5, H-mordenite and H-SAPO-34. Studies in Surface Science and Catalysis, 1307-1312. doi:10.1016/s0167-2991(07)80992-x es_ES
dc.description.references Zhu, X., Liu, S., Song, Y., & Xu, L. (2005). Catalytic cracking of C4 alkenes to propene and ethene: Influences of zeolites pore structures and Si/Al2 ratios. Applied Catalysis A: General, 288(1-2), 134-142. doi:10.1016/j.apcata.2005.04.050 es_ES
dc.description.references Xu, G., Zhu, X., Xie, S., Li, X., Liu, S., & Xu, L. (2009). 1-Butene Cracking to Propene on High Silica HMCM-22: Relations Between Product Distribution and Feed Conversion Under Various Temperatures. Catalysis Letters, 130(1-2), 204-210. doi:10.1007/s10562-009-9864-7 es_ES
dc.description.references Zhu, X., Liu, S., Song, Y., Xie, S., & Xu, L. (2005). Catalytic cracking of 1-butene to propene and ethene on MCM-22 zeolite. Applied Catalysis A: General, 290(1-2), 191-199. doi:10.1016/j.apcata.2005.05.028 es_ES
dc.description.references Zhao, G., Teng, J., Zhang, Y., Xie, Z., Yue, Y., Chen, Q., & Tang, Y. (2006). Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions. Applied Catalysis A: General, 299, 167-174. doi:10.1016/j.apcata.2005.10.022 es_ES
dc.description.references SAZAMA, P., DEDECEK, J., GABOVA, V., WICHTERLOVA, B., SPOTO, G., & BORDIGA, S. (2008). Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. Journal of Catalysis, 254(2), 180-189. doi:10.1016/j.jcat.2007.12.005 es_ES
dc.description.references Epelde, E., Gayubo, A. G., Olazar, M., Bilbao, J., & Aguayo, A. T. (2014). Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. Chemical Engineering Journal, 251, 80-91. doi:10.1016/j.cej.2014.04.060 es_ES
dc.description.references Ibáñez, M., Epelde, E., Aguayo, A. T., Gayubo, A. G., Bilbao, J., & Castaño, P. (2017). Selective dealumination of HZSM-5 zeolite boosts propylene by modifying 1-butene cracking pathway. Applied Catalysis A: General, 543, 1-9. doi:10.1016/j.apcata.2017.06.008 es_ES
dc.description.references Epelde, E., Gayubo, A. G., Olazar, M., Bilbao, J., & Aguayo, A. T. (2014). Intensifying Propylene Production by 1-Butene Transformation on a K Modified HZSM-5 Zeolite-Catalyst. Industrial & Engineering Chemistry Research, 53(12), 4614-4622. doi:10.1021/ie500082v es_ES
dc.description.references Epelde, E., Santos, J. I., Florian, P., Aguayo, A. T., Gayubo, A. G., Bilbao, J., & Castaño, P. (2015). Controlling coke deactivation and cracking selectivity of MFI zeolite by H3PO4 or KOH modification. Applied Catalysis A: General, 505, 105-115. doi:10.1016/j.apcata.2015.07.022 es_ES
dc.description.references Zhu, X., Liu, S., Song, Y., & Xu, L. (2005). Butene Catalytic Cracking to Propene and Ethene over Potassium Modified ZSM-5 Catalysts. Catalysis Letters, 103(3-4), 201-210. doi:10.1007/s10562-005-7155-5 es_ES
dc.description.references BLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011 es_ES
dc.description.references Lv, J., Hua, Z., Ge, T., Zhou, J., Zhou, J., Liu, Z., … Shi, J. (2017). Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking. Microporous and Mesoporous Materials, 247, 31-37. doi:10.1016/j.micromeso.2017.03.037 es_ES
dc.description.references Wang, Z., Jiang, G., Zhao, Z., Feng, X., Duan, A., Liu, J., … Gao, J. (2009). Highly Efficient P-Modified HZSM-5 Catalyst for the Coupling Transformation of Methanol and 1-Butene to Propene. Energy & Fuels, 24(2), 758-763. doi:10.1021/ef9009907 es_ES
dc.description.references XUE, N., CHEN, X., NIE, L., GUO, X., DING, W., CHEN, Y., … XIE, Z. (2007). Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5. Journal of Catalysis, 248(1), 20-28. doi:10.1016/j.jcat.2007.02.022 es_ES
dc.description.references Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112 es_ES
dc.description.references Gao, X., Tang, Z., Lu, G., Cao, G., Li, D., & Tan, Z. (2010). Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication. Solid State Sciences, 12(7), 1278-1282. doi:10.1016/j.solidstatesciences.2010.04.020 es_ES
dc.description.references Mitchell, S., Boltz, M., Liu, J., & Pérez-Ramírez, J. (2017). Engineering of ZSM-5 zeolite crystals for enhanced lifetime in the production of light olefins via 2-methyl-2-butene cracking. Catalysis Science & Technology, 7(1), 64-74. doi:10.1039/c6cy01009a es_ES
dc.description.references Shi, J., Zhao, G., Teng, J., Wang, Y., & Xie, Z. (2018). Morphology control of ZSM-5 zeolites and their application in Cracking reaction of C4 olefin. Inorganic Chemistry Frontiers, 5(11), 2734-2738. doi:10.1039/c8qi00686e es_ES
dc.description.references Al-Khattaf, S. S.; Palani, A.; Aitani, A. M. Catalytic Hydrocracking of Light Olefins. U.S. Patent 9,783,464 B2, 2017. es_ES
dc.description.references Johnson, D. L.; Nariman, K. E.; Ware, R. A. Catalytic Production of Light Olefins Rich in Propene. U.S. Patent 6,222,087 B1, 2001. es_ES
dc.description.references Wang, C., Zhang, L., Huang, X., Zhu, Y., Li, G. (Kevin), Gu, Q., … Ma, D. (2019). Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nature Communications, 10(1). doi:10.1038/s41467-019-12285-4 es_ES
dc.description.references Fu, D., Heijden, O., Stanciakova, K., Schmidt, J. E., & Weckhuysen, B. M. (2020). Disentangling Reaction Processes of Zeolites within Single‐Oriented Channels. Angewandte Chemie International Edition, 59(36), 15502-15506. doi:10.1002/anie.201916596 es_ES
dc.description.references Xomeritakis, G., & Tsapatsis, M. (1999). Permeation of Aromatic Isomer Vapors through Oriented MFI-Type Membranes Made by Secondary Growth. Chemistry of Materials, 11(4), 875-878. doi:10.1021/cm9811343 es_ES
dc.description.references Van der Pol, A. J. H. P., & van Hooff, J. H. C. (1992). Parameters affecting the synthesis of titanium silicalite 1. Applied Catalysis A: General, 92(2), 93-111. doi:10.1016/0926-860x(92)80309-z es_ES
dc.description.references Tang, X., Zhou, H., Qian, W., Wang, D., Jin, Y., & Wei, F. (2008). High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst. Catalysis Letters, 125(3-4), 380-385. doi:10.1007/s10562-008-9564-8 es_ES
dc.description.references Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5 es_ES
dc.description.references Zhang, X., Liu, D., Xu, D., Asahina, S., Cychosz, K. A., Agrawal, K. V., … Tsapatsis, M. (2012). Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. Science, 336(6089), 1684-1687. doi:10.1126/science.1221111 es_ES
dc.description.references Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288 es_ES
dc.description.references Liu, C., Kong, D., & Guo, H. (2014). The morphology control of zeolite ZSM-5 by regulating the polymerization degree of silicon and aluminum sources. Microporous and Mesoporous Materials, 193, 61-68. doi:10.1016/j.micromeso.2014.03.015 es_ES
dc.description.references Zhang, F.-Z., Fuji, M., & Takahashi, M. (2005). In Situ Growth of Continuous b-Oriented MFI Zeolite Membranes on Porous α-Alumina Substrates Precoated with a Mesoporous Silica Sublayer. Chemistry of Materials, 17(5), 1167-1173. doi:10.1021/cm048644j es_ES
dc.description.references Kox, M. H. F., Stavitski, E., & Weckhuysen, B. M. (2007). Nonuniform Catalytic Behavior of Zeolite Crystals as Revealed by In Situ Optical Microspectroscopy. Angewandte Chemie International Edition, 46(20), 3652-3655. doi:10.1002/anie.200700246 es_ES
dc.description.references Roeffaers, M. B. J., Ameloot, R., Baruah, M., Uji-i, H., Bulut, M., De Cremer, G., … De Vos, D. E. (2008). Morphology of Large ZSM-5 Crystals Unraveled by Fluorescence Microscopy. Journal of the American Chemical Society, 130(17), 5763-5772. doi:10.1021/ja7113147 es_ES
dc.description.references Roeffaers, M. B. J., Ameloot, R., Bons, A.-J., Mortier, W., De Cremer, G., de Kloe, R., … Sels, B. F. (2008). Relating Pore Structure to Activity at the Subcrystal Level for ZSM-5: An Electron Backscattering Diffraction and Fluorescence Microscopy Study. Journal of the American Chemical Society, 130(41), 13516-13517. doi:10.1021/ja8048767 es_ES
dc.description.references Koegler, J. H., van Bekkum, H., & Jansen, J. C. (1997). Growth model of oriented crystals of zeolite Si-ZSM-5. Zeolites, 19(4), 262-269. doi:10.1016/s0144-2449(97)00088-2 es_ES
dc.description.references Treps, L., Gomez, A., de Bruin, T., & Chizallet, C. (2020). Environment, Stability and Acidity of External Surface Sites of Silicalite-1 and ZSM-5 Micro and Nano Slabs, Sheets, and Crystals. ACS Catalysis, 10(5), 3297-3312. doi:10.1021/acscatal.9b05103 es_ES
dc.description.references Zeng, G., Chen, C., Li, D., Hou, B., & Sun, Y. (2013). Exposure of (001) planes and (011) planes in MFI zeolite. CrystEngComm, 15(18), 3521. doi:10.1039/c3ce40142a es_ES
dc.description.references Roeffaers, M. B. J., Sels, B. F., Uji-i, H., Blanpain, B., L’hoëst, P., Jacobs, P. A., … De Vos, D. E. (2007). Space- and Time-Resolved Visualization of Acid Catalysis in ZSM-5 Crystals by Fluorescence Microscopy. Angewandte Chemie International Edition, 46(10), 1706-1709. doi:10.1002/anie.200604336 es_ES
dc.description.references Díaz, I., Kokkoli, E., Terasaki, O., & Tsapatsis, M. (2004). Surface Structure of Zeolite (MFI) Crystals. Chemistry of Materials, 16(25), 5226-5232. doi:10.1021/cm0488534 es_ES
dc.description.references Corma, A., & Orchillés, A. V. (2000). Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 35-36, 21-30. doi:10.1016/s1387-1811(99)00205-x es_ES
dc.description.references Li, J., Li, T., Ma, H., Sun, Q., Li, C., Ying, W., & Fang, D. (2018). Kinetics of coupling cracking of butene and pentene on modified HZSM-5 catalyst. Chemical Engineering Journal, 346, 397-405. doi:10.1016/j.cej.2018.04.061 es_ES
dc.description.references Ma, Y., Cai, D., Li, Y., Wang, N., Muhammad, U., Carlsson, A., … Wei, F. (2016). The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study. RSC Advances, 6(78), 74797-74801. doi:10.1039/c6ra19073a es_ES
dc.description.references Wang, N., Sun, W., Hou, Y., Ge, B., Hu, L., Nie, J., … Wei, F. (2018). Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. Journal of Catalysis, 360, 89-96. doi:10.1016/j.jcat.2017.12.024 es_ES
dc.description.references Sarazen, M. L., Doskocil, E., & Iglesia, E. (2016). Effects of Void Environment and Acid Strength on Alkene Oligomerization Selectivity. ACS Catalysis, 6(10), 7059-7070. doi:10.1021/acscatal.6b02128 es_ES
dc.description.references Bortnovsky, O., Sazama, P., & Wichterlova, B. (2005). Cracking of pentenes to C2–C4 light olefins over zeolites and zeotypes. Applied Catalysis A: General, 287(2), 203-213. doi:10.1016/j.apcata.2005.03.037 es_ES
dc.description.references Gobin, O. C., Reitmeier, S. J., Jentys, A., & Lercher, J. A. (2009). Comparison of the Transport of Aromatic Compounds in Small and Large MFI Particles. The Journal of Physical Chemistry C, 113(47), 20435-20444. doi:10.1021/jp907444c es_ES
dc.description.references Gobin, O. C., Reitmeier, S. J., Jentys, A., & Lercher, J. A. (2009). Diffusion pathways of benzene, toluene and p-xylene in MFI. Microporous and Mesoporous Materials, 125(1-2), 3-10. doi:10.1016/j.micromeso.2009.01.025 es_ES
dc.description.references DEROUANE, E. (1980). A novel effect of shape selectivity: Molecular traffic control in zeolite ZSM-5. Journal of Catalysis, 65(2), 486-489. doi:10.1016/0021-9517(80)90328-0 es_ES
dc.description.references Iwase, Y., Sakamoto, Y., Shiga, A., Miyaji, A., Motokura, K., Koyama, T., & Baba, T. (2012). Shape-Selective Catalysis Determined by the Volume of a Zeolite Cavity and the Reaction Mechanism for Propylene Production by the Conversion of Butene Using a Proton-Exchanged Zeolite. The Journal of Physical Chemistry C, 116(8), 5182-5196. doi:10.1021/jp212549j es_ES
dc.description.references Ono, Y., Kitagawa, H., & Sendoda, Y. (1987). Transformation of but-1-ene into aromatic hydrocarbons over ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(9), 2913. doi:10.1039/f19878302913 es_ES
dc.description.references Coelho, A., Caeiro, G., Lemos, M. A. N. D. A., Lemos, F., & Ribeiro, F. R. (2013). 1-Butene oligomerization over ZSM-5 zeolite: Part 1 – Effect of reaction conditions. Fuel, 111, 449-460. doi:10.1016/j.fuel.2013.03.066 es_ES
dc.description.references Aloise, A., Catizzone, E., Migliori, M., B.Nagy, J., & Giordano, G. (2017). Catalytic behavior in propane aromatization using GA-MFI catalyst. Chinese Journal of Chemical Engineering, 25(12), 1863-1870. doi:10.1016/j.cjche.2017.04.016 es_ES
dc.description.references Song, L., & Rees, L. V. C. (2000). Adsorption and diffusion of cyclic hydrocarbon in MFI-type zeolites studied by gravimetric and frequency-response techniques. Microporous and Mesoporous Materials, 35-36, 301-314. doi:10.1016/s1387-1811(99)00229-2 es_ES
dc.description.references Voorhies, A. (1945). Carbon Formation in Catalytic Cracking. Industrial & Engineering Chemistry, 37(4), 318-322. doi:10.1021/ie50424a010 es_ES
dc.description.references Fogler, H. S. Elements of Chemical Reaction Engineering; Prentice Hall Profesional: United States, 2006; Chapter 10, Section 10.7, p 717. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem