Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalo, Maria José | es_ES |
dc.contributor.author | Li, Yi-Cheng | es_ES |
dc.contributor.author | Chen, Kai-Yi | es_ES |
dc.contributor.author | Gil, David | es_ES |
dc.contributor.author | Montoro, Teresa | es_ES |
dc.contributor.author | Nájera, Inmaculada | es_ES |
dc.contributor.author | Baixauli, Carlos | es_ES |
dc.contributor.author | GRANELL RICHART, ANTONIO | es_ES |
dc.contributor.author | Monforte Gilabert, Antonio José | es_ES |
dc.date.accessioned | 2021-05-08T03:31:04Z | |
dc.date.available | 2021-05-08T03:31:04Z | |
dc.date.issued | 2020-04-24 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166075 | |
dc.description.abstract | [EN] Global climate change is increasing the range of temperatures that crop plants must face during their life cycle, giving negative effects to yields. In this changing scenario, understanding the genetic control of plant responses to a range of increasing temperature conditions is a prerequisite to developing cultivars with increased resilience. The current work reports the identification of Quantitative Trait Loci (QTL) involved in reproductive traits affected by temperature, such as the flower number (FLN) and fruit number (FRN) per truss and percentage of fruit set (FRS), stigma exsertion (SE), pollen viability (PV) and the incidence of the physiological disorder tipburn (TB). These traits were investigated in 168 Recombinant Inbred Lines (RIL) and 52 Introgression Lines (IL) derived from the cross between Solanum lycopersicum var. "MoneyMaker" and S. pimpinellifolium accession . Mapping populations were cultivated under increased temperature regimen conditions: T1 (25 degrees C day/21 degrees C night), T2 (30 degrees C day/25 degrees C night) and T3 (35 degrees C day/30 degrees C night). The increase in temperature drastically affected several reproductive traits, for example, FRS in Moneymaker was reduced between 75 and 87% at T2 and T3 when compared to T1, while several RILs showed a reduction of less than 50%. QTL analysis allowed the identification of genomic regions affecting these traits at different temperatures regimens. A total of 22 QTLs involved in reproductive traits at different temperatures were identified by multi-environmental QTL analysis and eight involved in pollen viability traits. Most QTLs were temperature specific, except QTLs on chromosomes 1, 2, 4, 6, and 12. Moreover, a QTL located in chromosome 7 was identified for low incidence of TP in the RIL population, which was confirmed in ILs with introgressions on chromosome 7. Furthermore, ILs with introgressions in chromosomes 1 and 12 had good FRN and FRS in T3 in replicated trials. These results represent a catalog of QTLs and pre-breeding materials that could be used as the starting point for deciphering the genetic control of the genetic response of reproductive traits at different temperatures and paving the road for developing new cultivars adapted to climate change. | es_ES |
dc.description.sponsorship | Sara Gimeno was supported by the program "Youth Employment Initiative" from the European Union and the Spanish Ministry of Economy and Competitiveness. This work was supported by the European Commission H2020 research and innovation program through the TOMGEM project agreement No. 679796. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Pollen viability | es_ES |
dc.subject | Fruit set | es_ES |
dc.subject | QTL | es_ES |
dc.subject | Introgression line | es_ES |
dc.subject | Tipburn | es_ES |
dc.subject | Abiotic stress | es_ES |
dc.title | Genetic Control of Reproductive Traits in Tomatoes Under High Temperature | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2020.00326 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Gonzalo, MJ.; Li, Y.; Chen, K.; Gil, D.; Montoro, T.; Nájera, I.; Baixauli, C.... (2020). Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. Frontiers in Plant Science. 11:1-15. https://doi.org/10.3389/fpls.2020.00326 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2020.00326 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 32391023 | es_ES |
dc.identifier.pmcid | PMC7193983 | es_ES |
dc.relation.pasarela | S\433426 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abdul-Baki, A. A. (1991). Tolerance of Tomato Cultivars and Selected Germplasm to Heat Stress. Journal of the American Society for Horticultural Science, 116(6), 1113-1116. doi:10.21273/jashs.116.6.1113 | es_ES |
dc.description.references | Abdul-Baki, A. A., & Stommel, J. R. (1995). Pollen Viability and Fruit Set of Tomato Genotypes under Optimumand High-temperature Regimes. HortScience, 30(1), 115-117. doi:10.21273/hortsci.30.1.115 | es_ES |
dc.description.references | Adams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524 | es_ES |
dc.description.references | Alam, M., Sultana, N., Ahmad, S., Hossain, M., & Islam, A. (1970). Performance of heat tolerant tomato hybrid lines under hot, humid conditions. Bangladesh Journal of Agricultural Research, 35(3), 367-373. doi:10.3329/bjar.v35i3.6442 | es_ES |
dc.description.references | Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4 | es_ES |
dc.description.references | Alsamir, M., Ahmad, N., Arief, V., Mahmood, T., & Trethowan, R. (2019). Phenotypic diversity and marker-trait association studies under heat stress in tomato (Solanum lycopersicum L.). Australian Journal of Crop Science, 13((04) 2019), 578-587. doi:10.21475/ajcs.19.13.04.p1581 | es_ES |
dc.description.references | Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9(11), 720. doi:10.3390/agronomy9110720 | es_ES |
dc.description.references | Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0 | es_ES |
dc.description.references | Barrantes, W., López-Casado, G., García-Martínez, S., Alonso, A., Rubio, F., Ruiz, J. J., … Monforte, A. J. (2016). Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01172 | es_ES |
dc.description.references | Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00273 | es_ES |
dc.description.references | Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4 | es_ES |
dc.description.references | Capel, C., Yuste-Lisbona, F. J., López-Casado, G., Angosto, T., Cuartero, J., Lozano, R., & Capel, J. (2016). Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population. Theoretical and Applied Genetics, 130(1), 213-222. doi:10.1007/s00122-016-2809-9 | es_ES |
dc.description.references | Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. doi:10.1038/nclimate2153 | es_ES |
dc.description.references | CHARLES, W. B., & HARRIS, R. E. (1972). TOMATO FRUIT-SET AT HIGH AND LOW TEMPERATURES. Canadian Journal of Plant Science, 52(4), 497-506. doi:10.4141/cjps72-080 | es_ES |
dc.description.references | Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558 | es_ES |
dc.description.references | Chung, M.-Y., Vrebalov, J., Alba, R., Lee, J., McQuinn, R., Chung, J.-D., … Giovannoni, J. (2010). A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. The Plant Journal, 64(6), 936-947. doi:10.1111/j.1365-313x.2010.04384.x | es_ES |
dc.description.references | Dane, F., Hunter, A. G., & Chambliss, O. L. (1991). Fruit Set, Pollen Fertility, and Combining Ability of Selected Tomato Genotypes under High-temperature Field Conditions. Journal of the American Society for Horticultural Science, 116(5), 906-910. doi:10.21273/jashs.116.5.906 | es_ES |
dc.description.references | deVicente, M. C., & Tanksley, S. D. (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 134(2), 585-596. doi:10.1093/genetics/134.2.585 | es_ES |
dc.description.references | Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188 | es_ES |
dc.description.references | Geisenberg, C., & Stewart, K. (1986). Field crop management. The Tomato Crop, 511-557. doi:10.1007/978-94-009-3137-4_13 | es_ES |
dc.description.references | Grilli, G. V. G., Braz, L. T., & Lemos, E. G. M. (2007). identification for tolerance to fruit set in tomato by fAFLP markers. Cropp Breeding and Applied Biotechnology, 7(3), 234-241. doi:10.12702/1984-7033.v07n03a02 | es_ES |
dc.description.references | Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14(5), 9643-9684. doi:10.3390/ijms14059643 | es_ES |
dc.description.references | Jenni, S., Truco, M. J., & Michelmore, R. W. (2013). Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theoretical and Applied Genetics, 126(12), 3065-3079. doi:10.1007/s00122-013-2193-7 | es_ES |
dc.description.references | Kugblenu, Y. O., Oppong Danso, E., Ofori, K., Andersen, M. N., Abenney-Mickson, S., Sabi, E. B., … Jørgensen, S. T. (2013). Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 63(6), 516-522. doi:10.1080/09064710.2013.813062 | es_ES |
dc.description.references | Levy, A., Rabinowitch, H. D., & Kedar, N. (1978). Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27(1), 211-218. doi:10.1007/bf00039137 | es_ES |
dc.description.references | Lin, K.-H., Yeh, W.-L., Chen, H.-M., & Lo, H.-F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174(1), 119-135. doi:10.1007/s10681-010-0147-6 | es_ES |
dc.description.references | Lohar, D. ., & Peat, W. . (1998). Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia Horticulturae, 73(1), 53-60. doi:10.1016/s0304-4238(97)00056-3 | es_ES |
dc.description.references | Macias-González, M., Truco, M. J., Bertier, L. D., Jenni, S., Simko, I., Hayes, R. J., & Michelmore, R. W. (2019). Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics, 132(8), 2209-2222. doi:10.1007/s00122-019-03349-6 | es_ES |
dc.description.references | Meng, L., Li, H., Zhang, L., & Wang, J. (2015). QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3(3), 269-283. doi:10.1016/j.cj.2015.01.001 | es_ES |
dc.description.references | Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684 | es_ES |
dc.description.references | Nahar, K., & Ullah, S. M. (2011). Effect of Water Stress on Moisture Content Distribution in Soil and Morphological Characters of Two Tomato (Lycopersicon esculentum Mill) Cultivars. Journal of Scientific Research, 3(3), 677-682. doi:10.3329/jsr.v3i3.7000 | es_ES |
dc.description.references | Nahar, K., & Ullah, S. (2012). Morphological and Physiological Characters of Tomato (Lycopersicon esculentum Mill) Cultivars under Water Stress. Bangladesh Journal of Agricultural Research, 37(2), 355-360. doi:10.3329/bjar.v37i2.11240 | es_ES |
dc.description.references | Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6). doi:10.1007/s10681-017-1927-z | es_ES |
dc.description.references | Peet, M. M., Sato, S., & Gardner, R. G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Environment, 21(2), 225-231. doi:10.1046/j.1365-3040.1998.00281.x | es_ES |
dc.description.references | Powell, A. L. T., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., … Bennett, A. B. (2012). Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 336(6089), 1711-1715. doi:10.1126/science.1222218 | es_ES |
dc.description.references | Pressman, E., Harel, D., Zamski, E., Shaked, R., Althan, L., Rosenfeld, K., & Firon, N. (2006). The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development. The Journal of Horticultural Science and Biotechnology, 81(3), 341-348. doi:10.1080/14620316.2006.11512071 | es_ES |
dc.description.references | PRESSMAN, E. (2002). The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Annals of Botany, 90(5), 631-636. doi:10.1093/aob/mcf240 | es_ES |
dc.description.references | Rambla, J. L., Medina, A., Fernández-del-Carmen, A., Barrantes, W., Grandillo, S., Cammareri, M., … Granell, A. (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, erw455. doi:10.1093/jxb/erw455 | es_ES |
dc.description.references | Rick, C. M., & Dempsey, W. H. (1969). Position of the Stigma in Relation to Fruit Setting of the Tomato. Botanical Gazette, 130(3), 180-186. doi:10.1086/336488 | es_ES |
dc.description.references | Ruggieri, V., Calafiore, R., Schettini, C., Rigano, M. M., Olivieri, F., Frusciante, L., & Barone, A. (2019). Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy, 9(1), 22. doi:10.3390/agronomy9010022 | es_ES |
dc.description.references | Salinas, M., Capel, C., Alba, J. M., Mora, B., Cuartero, J., Fernández-Muñoz, R., … Capel, J. (2012). Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theoretical and Applied Genetics, 126(1), 83-92. doi:10.1007/s00122-012-1961-0 | es_ES |
dc.description.references | SATO, S., KAMIYAMA, M., IWATA, T., MAKITA, N., FURUKAWA, H., & IKEDA, H. (2006). Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development. Annals of Botany, 97(5), 731-738. doi:10.1093/aob/mcl037 | es_ES |
dc.description.references | Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A., & Baulcombe, D. C. (2011). Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. The EMBO Journal, 31(2), 257-266. doi:10.1038/emboj.2011.458 | es_ES |
dc.description.references | Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563 | es_ES |
dc.description.references | Starck, Z., Siwiec, A., & Chotuj, D. (1994). Distribution of calcium in tomato plants in response to heat stress and plant growth regulators. Plant and Soil, 167(1), 143-148. doi:10.1007/bf01587609 | es_ES |
dc.description.references | Vegas, J., Garcia-Mas, J., & Monforte, A. J. (2013). Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theoretical and Applied Genetics, 126(6), 1531-1544. doi:10.1007/s00122-013-2071-3 | es_ES |
dc.description.references | Voss-Fels, K. P., Cooper, M., & Hayes, B. J. (2018). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 132(3), 669-686. doi:10.1007/s00122-018-3270-8 | es_ES |
dc.description.references | WAHID, A., GELANI, S., ASHRAF, M., & FOOLAD, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199-223. doi:10.1016/j.envexpbot.2007.05.011 | es_ES |
dc.description.references | Wen, J., Jiang, F., Weng, Y., Sun, M., Shi, X., Zhou, Y., … Wu, Z. (2019). Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-2008-3 | es_ES |
dc.description.references | Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5). doi:10.1007/s11032-017-0664-2 | es_ES |
dc.description.references | Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457 | es_ES |