- -

Genetic Control of Reproductive Traits in Tomatoes Under High Temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic Control of Reproductive Traits in Tomatoes Under High Temperature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalo, Maria José es_ES
dc.contributor.author Li, Yi-Cheng es_ES
dc.contributor.author Chen, Kai-Yi es_ES
dc.contributor.author Gil, David es_ES
dc.contributor.author Montoro, Teresa es_ES
dc.contributor.author Nájera, Inmaculada es_ES
dc.contributor.author Baixauli, Carlos es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.date.accessioned 2021-05-08T03:31:04Z
dc.date.available 2021-05-08T03:31:04Z
dc.date.issued 2020-04-24 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166075
dc.description.abstract [EN] Global climate change is increasing the range of temperatures that crop plants must face during their life cycle, giving negative effects to yields. In this changing scenario, understanding the genetic control of plant responses to a range of increasing temperature conditions is a prerequisite to developing cultivars with increased resilience. The current work reports the identification of Quantitative Trait Loci (QTL) involved in reproductive traits affected by temperature, such as the flower number (FLN) and fruit number (FRN) per truss and percentage of fruit set (FRS), stigma exsertion (SE), pollen viability (PV) and the incidence of the physiological disorder tipburn (TB). These traits were investigated in 168 Recombinant Inbred Lines (RIL) and 52 Introgression Lines (IL) derived from the cross between Solanum lycopersicum var. "MoneyMaker" and S. pimpinellifolium accession . Mapping populations were cultivated under increased temperature regimen conditions: T1 (25 degrees C day/21 degrees C night), T2 (30 degrees C day/25 degrees C night) and T3 (35 degrees C day/30 degrees C night). The increase in temperature drastically affected several reproductive traits, for example, FRS in Moneymaker was reduced between 75 and 87% at T2 and T3 when compared to T1, while several RILs showed a reduction of less than 50%. QTL analysis allowed the identification of genomic regions affecting these traits at different temperatures regimens. A total of 22 QTLs involved in reproductive traits at different temperatures were identified by multi-environmental QTL analysis and eight involved in pollen viability traits. Most QTLs were temperature specific, except QTLs on chromosomes 1, 2, 4, 6, and 12. Moreover, a QTL located in chromosome 7 was identified for low incidence of TP in the RIL population, which was confirmed in ILs with introgressions on chromosome 7. Furthermore, ILs with introgressions in chromosomes 1 and 12 had good FRN and FRS in T3 in replicated trials. These results represent a catalog of QTLs and pre-breeding materials that could be used as the starting point for deciphering the genetic control of the genetic response of reproductive traits at different temperatures and paving the road for developing new cultivars adapted to climate change. es_ES
dc.description.sponsorship Sara Gimeno was supported by the program "Youth Employment Initiative" from the European Union and the Spanish Ministry of Economy and Competitiveness. This work was supported by the European Commission H2020 research and innovation program through the TOMGEM project agreement No. 679796. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pollen viability es_ES
dc.subject Fruit set es_ES
dc.subject QTL es_ES
dc.subject Introgression line es_ES
dc.subject Tipburn es_ES
dc.subject Abiotic stress es_ES
dc.title Genetic Control of Reproductive Traits in Tomatoes Under High Temperature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2020.00326 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gonzalo, MJ.; Li, Y.; Chen, K.; Gil, D.; Montoro, T.; Nájera, I.; Baixauli, C.... (2020). Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. Frontiers in Plant Science. 11:1-15. https://doi.org/10.3389/fpls.2020.00326 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2020.00326 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 32391023 es_ES
dc.identifier.pmcid PMC7193983 es_ES
dc.relation.pasarela S\433426 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abdul-Baki, A. A. (1991). Tolerance of Tomato Cultivars and Selected Germplasm to Heat Stress. Journal of the American Society for Horticultural Science, 116(6), 1113-1116. doi:10.21273/jashs.116.6.1113 es_ES
dc.description.references Abdul-Baki, A. A., & Stommel, J. R. (1995). Pollen Viability and Fruit Set of Tomato Genotypes under Optimumand High-temperature Regimes. HortScience, 30(1), 115-117. doi:10.21273/hortsci.30.1.115 es_ES
dc.description.references Adams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524 es_ES
dc.description.references Alam, M., Sultana, N., Ahmad, S., Hossain, M., & Islam, A. (1970). Performance of heat tolerant tomato hybrid lines under hot, humid conditions. Bangladesh Journal of Agricultural Research, 35(3), 367-373. doi:10.3329/bjar.v35i3.6442 es_ES
dc.description.references Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4 es_ES
dc.description.references Alsamir, M., Ahmad, N., Arief, V., Mahmood, T., & Trethowan, R. (2019). Phenotypic diversity and marker-trait association studies under heat stress in tomato (Solanum lycopersicum L.). Australian Journal of Crop Science, 13((04) 2019), 578-587. doi:10.21475/ajcs.19.13.04.p1581 es_ES
dc.description.references Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating Breeding for Heat Tolerance in Tomato (Solanum lycopersicum L.): An Integrated Approach. Agronomy, 9(11), 720. doi:10.3390/agronomy9110720 es_ES
dc.description.references Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0 es_ES
dc.description.references Barrantes, W., López-Casado, G., García-Martínez, S., Alonso, A., Rubio, F., Ruiz, J. J., … Monforte, A. J. (2016). Exploring New Alleles Involved in Tomato Fruit Quality in an Introgression Line Library of Solanum pimpinellifolium. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01172 es_ES
dc.description.references Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00273 es_ES
dc.description.references Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4 es_ES
dc.description.references Capel, C., Yuste-Lisbona, F. J., López-Casado, G., Angosto, T., Cuartero, J., Lozano, R., & Capel, J. (2016). Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum × S. pimpinellifolium population. Theoretical and Applied Genetics, 130(1), 213-222. doi:10.1007/s00122-016-2809-9 es_ES
dc.description.references Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287-291. doi:10.1038/nclimate2153 es_ES
dc.description.references CHARLES, W. B., & HARRIS, R. E. (1972). TOMATO FRUIT-SET AT HIGH AND LOW TEMPERATURES. Canadian Journal of Plant Science, 52(4), 497-506. doi:10.4141/cjps72-080 es_ES
dc.description.references Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558 es_ES
dc.description.references Chung, M.-Y., Vrebalov, J., Alba, R., Lee, J., McQuinn, R., Chung, J.-D., … Giovannoni, J. (2010). A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. The Plant Journal, 64(6), 936-947. doi:10.1111/j.1365-313x.2010.04384.x es_ES
dc.description.references Dane, F., Hunter, A. G., & Chambliss, O. L. (1991). Fruit Set, Pollen Fertility, and Combining Ability of Selected Tomato Genotypes under High-temperature Field Conditions. Journal of the American Society for Horticultural Science, 116(5), 906-910. doi:10.21273/jashs.116.5.906 es_ES
dc.description.references deVicente, M. C., & Tanksley, S. D. (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 134(2), 585-596. doi:10.1093/genetics/134.2.585 es_ES
dc.description.references Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188 es_ES
dc.description.references Geisenberg, C., & Stewart, K. (1986). Field crop management. The Tomato Crop, 511-557. doi:10.1007/978-94-009-3137-4_13 es_ES
dc.description.references Grilli, G. V. G., Braz, L. T., & Lemos, E. G. M. (2007). identification for tolerance to fruit set in tomato by fAFLP markers. Cropp Breeding and Applied Biotechnology, 7(3), 234-241. doi:10.12702/1984-7033.v07n03a02 es_ES
dc.description.references Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14(5), 9643-9684. doi:10.3390/ijms14059643 es_ES
dc.description.references Jenni, S., Truco, M. J., & Michelmore, R. W. (2013). Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce. Theoretical and Applied Genetics, 126(12), 3065-3079. doi:10.1007/s00122-013-2193-7 es_ES
dc.description.references Kugblenu, Y. O., Oppong Danso, E., Ofori, K., Andersen, M. N., Abenney-Mickson, S., Sabi, E. B., … Jørgensen, S. T. (2013). Screening tomato genotypes for adaptation to high temperature in West Africa. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 63(6), 516-522. doi:10.1080/09064710.2013.813062 es_ES
dc.description.references Levy, A., Rabinowitch, H. D., & Kedar, N. (1978). Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27(1), 211-218. doi:10.1007/bf00039137 es_ES
dc.description.references Lin, K.-H., Yeh, W.-L., Chen, H.-M., & Lo, H.-F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174(1), 119-135. doi:10.1007/s10681-010-0147-6 es_ES
dc.description.references Lohar, D. ., & Peat, W. . (1998). Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia Horticulturae, 73(1), 53-60. doi:10.1016/s0304-4238(97)00056-3 es_ES
dc.description.references Macias-González, M., Truco, M. J., Bertier, L. D., Jenni, S., Simko, I., Hayes, R. J., & Michelmore, R. W. (2019). Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics, 132(8), 2209-2222. doi:10.1007/s00122-019-03349-6 es_ES
dc.description.references Meng, L., Li, H., Zhang, L., & Wang, J. (2015). QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3(3), 269-283. doi:10.1016/j.cj.2015.01.001 es_ES
dc.description.references Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684 es_ES
dc.description.references Nahar, K., & Ullah, S. M. (2011). Effect of Water Stress on Moisture Content Distribution in Soil and Morphological Characters of Two Tomato (Lycopersicon esculentum Mill) Cultivars. Journal of Scientific Research, 3(3), 677-682. doi:10.3329/jsr.v3i3.7000 es_ES
dc.description.references Nahar, K., & Ullah, S. (2012). Morphological and Physiological Characters of Tomato (Lycopersicon esculentum Mill) Cultivars under Water Stress. Bangladesh Journal of Agricultural Research, 37(2), 355-360. doi:10.3329/bjar.v37i2.11240 es_ES
dc.description.references Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6). doi:10.1007/s10681-017-1927-z es_ES
dc.description.references Peet, M. M., Sato, S., & Gardner, R. G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Environment, 21(2), 225-231. doi:10.1046/j.1365-3040.1998.00281.x es_ES
dc.description.references Powell, A. L. T., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., … Bennett, A. B. (2012). Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 336(6089), 1711-1715. doi:10.1126/science.1222218 es_ES
dc.description.references Pressman, E., Harel, D., Zamski, E., Shaked, R., Althan, L., Rosenfeld, K., & Firon, N. (2006). The effect of high temperatures on the expression and activity of sucrose-cleaving enzymes during tomato (Lycopersicon esculentum) anther development. The Journal of Horticultural Science and Biotechnology, 81(3), 341-348. doi:10.1080/14620316.2006.11512071 es_ES
dc.description.references PRESSMAN, E. (2002). The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Annals of Botany, 90(5), 631-636. doi:10.1093/aob/mcf240 es_ES
dc.description.references Rambla, J. L., Medina, A., Fernández-del-Carmen, A., Barrantes, W., Grandillo, S., Cammareri, M., … Granell, A. (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, erw455. doi:10.1093/jxb/erw455 es_ES
dc.description.references Rick, C. M., & Dempsey, W. H. (1969). Position of the Stigma in Relation to Fruit Setting of the Tomato. Botanical Gazette, 130(3), 180-186. doi:10.1086/336488 es_ES
dc.description.references Ruggieri, V., Calafiore, R., Schettini, C., Rigano, M. M., Olivieri, F., Frusciante, L., & Barone, A. (2019). Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy, 9(1), 22. doi:10.3390/agronomy9010022 es_ES
dc.description.references Salinas, M., Capel, C., Alba, J. M., Mora, B., Cuartero, J., Fernández-Muñoz, R., … Capel, J. (2012). Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theoretical and Applied Genetics, 126(1), 83-92. doi:10.1007/s00122-012-1961-0 es_ES
dc.description.references SATO, S., KAMIYAMA, M., IWATA, T., MAKITA, N., FURUKAWA, H., & IKEDA, H. (2006). Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development. Annals of Botany, 97(5), 731-738. doi:10.1093/aob/mcl037 es_ES
dc.description.references Shivaprasad, P. V., Dunn, R. M., Santos, B. A., Bassett, A., & Baulcombe, D. C. (2011). Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. The EMBO Journal, 31(2), 257-266. doi:10.1038/emboj.2011.458 es_ES
dc.description.references Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563 es_ES
dc.description.references Starck, Z., Siwiec, A., & Chotuj, D. (1994). Distribution of calcium in tomato plants in response to heat stress and plant growth regulators. Plant and Soil, 167(1), 143-148. doi:10.1007/bf01587609 es_ES
dc.description.references Vegas, J., Garcia-Mas, J., & Monforte, A. J. (2013). Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theoretical and Applied Genetics, 126(6), 1531-1544. doi:10.1007/s00122-013-2071-3 es_ES
dc.description.references Voss-Fels, K. P., Cooper, M., & Hayes, B. J. (2018). Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 132(3), 669-686. doi:10.1007/s00122-018-3270-8 es_ES
dc.description.references WAHID, A., GELANI, S., ASHRAF, M., & FOOLAD, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199-223. doi:10.1016/j.envexpbot.2007.05.011 es_ES
dc.description.references Wen, J., Jiang, F., Weng, Y., Sun, M., Shi, X., Zhou, Y., … Wu, Z. (2019). Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-2008-3 es_ES
dc.description.references Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5). doi:10.1007/s11032-017-0664-2 es_ES
dc.description.references Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem