Mostrar el registro sencillo del ítem
dc.contributor.author | Rodríguez Rodríguez, Raúl | es_ES |
dc.contributor.author | Alfaro Saiz, Juan José | es_ES |
dc.contributor.author | Carot Sierra, José Miguel | es_ES |
dc.date.accessioned | 2021-05-12T03:32:21Z | |
dc.date.available | 2021-05-12T03:32:21Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0166-3615 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166217 | |
dc.description.abstract | [EN] This paper presents how to objectively set up the process for activation of the future action plans from a supply chain Balanced Scorecard (BSC), aligning such an activation process to reach the main objectives and being able to save resources. Additionally, it also shows how to define supply chain business scenarios based on the future expected values of the Key Performance Indicators (KPI). Once the future business scenario has been chosen, the KPI values associated with this scenario will become the new KPI values of the BSC in order to align efforts and save resources Further, the strategic objectives associated with the KPIs may also be extensively retuned, thus redefining their target values. From the application carried out, there were four KPIs whose values needed, in absolute terms, to be increased and four other KPIs to be decreased. Additionally, the associated strategic objectives were retuned; for example, the value of the strategic objective "To reduce product development costs" was initially set in the BSC at 10 % but it was deduced to 8% as a consequence of the application of the proposal. As a result, this methodology has aligned all the future efforts of a whole supply chain in order to reach one point on a plane, which is a combination of interrelated supply chain KPI. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers in Industry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Performance management | es_ES |
dc.subject | Scenarios | es_ES |
dc.subject | Principal component analysis | es_ES |
dc.subject | Operations efficiency | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | A dynamic supply chain BSC-based methodology to improve operations efficiency | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compind.2020.103294 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Rodríguez Rodríguez, R.; Alfaro Saiz, JJ.; Carot Sierra, JM. (2020). A dynamic supply chain BSC-based methodology to improve operations efficiency. Computers in Industry. 122:1-10. https://doi.org/10.1016/j.compind.2020.103294 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compind.2020.103294 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 122 | es_ES |
dc.relation.pasarela | S\420302 | es_ES |
dc.description.references | Alfaro-Saiz, J.-J., Bas, M. C., Giner-Bosch, V., Rodríguez-Rodríguez, R., & Verdecho, M.-J. (2020). An evaluation of the environmental factors for supply chain strategy decisions using grey systems and composite indicators. Applied Mathematical Modelling, 79, 490-505. doi:10.1016/j.apm.2019.10.048 | es_ES |
dc.description.references | Balfaqih, H., Nopiah, Z. M., Saibani, N., & Al-Nory, M. T. (2016). Review of supply chain performance measurement systems: 1998–2015. Computers in Industry, 82, 135-150. doi:10.1016/j.compind.2016.07.002 | es_ES |
dc.description.references | Cai, J., Liu, X., Xiao, Z., & Liu, J. (2009). Improving supply chain performance management: A systematic approach to analyzing iterative KPI accomplishment. Decision Support Systems, 46(2), 512-521. doi:10.1016/j.dss.2008.09.004 | es_ES |
dc.description.references | Chenhall, R. H., & Langfield-Smith, K. (2007). Multiple Perspectives of Performance Measures. European Management Journal, 25(4), 266-282. doi:10.1016/j.emj.2007.06.001 | es_ES |
dc.description.references | Chytas, P., Glykas, M., & Valiris, G. (2011). A proactive balanced scorecard. International Journal of Information Management, 31(5), 460-468. doi:10.1016/j.ijinfomgt.2010.12.007 | es_ES |
dc.description.references | Coughlan, P., & Coghlan, D. (2002). Action research for operations management. International Journal of Operations & Production Management, 22(2), 220-240. doi:10.1108/01443570210417515 | es_ES |
dc.description.references | Cross, K. F., & Lynch, R. L. (1988). The «SMART» way to define and sustain success. National Productivity Review, 8(1), 23-33. doi:10.1002/npr.4040080105 | es_ES |
dc.description.references | Denham, M. C. (1995). Implementing partial least squares. Statistics and Computing, 5(3), 191-202. doi:10.1007/bf00142661 | es_ES |
dc.description.references | Derbyshire, J. (2017). Potential surprise theory as a theoretical foundation for scenario planning. Technological Forecasting and Social Change, 124, 77-87. doi:10.1016/j.techfore.2016.05.008 | es_ES |
dc.description.references | Dey, P. K., & Cheffi, W. (2012). Green supply chain performance measurement using the analytic hierarchy process: a comparative analysis of manufacturing organisations. Production Planning & Control, 24(8-9), 702-720. doi:10.1080/09537287.2012.666859 | es_ES |
dc.description.references | Dror, S. (2017). Linking operation plans to business objectives using QFD. Total Quality Management & Business Excellence, 30(1-2), 135-150. doi:10.1080/14783363.2017.1300053 | es_ES |
dc.description.references | Geladi, P. (1988). Notes on the history and nature of partial least squares (PLS) modelling. Journal of Chemometrics, 2(4), 231-246. doi:10.1002/cem.1180020403 | es_ES |
dc.description.references | Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations & Production Management, 21(1/2), 71-87. doi:10.1108/01443570110358468 | es_ES |
dc.description.references | Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333-347. doi:10.1016/j.ijpe.2003.08.003 | es_ES |
dc.description.references | Hald, K. S., & Mouritsen, J. (2018). The evolution of performance measurement systems in a supply chain: A longitudinal case study on the role of interorganisational factors. International Journal of Production Economics, 205, 256-271. doi:10.1016/j.ijpe.2018.09.021 | es_ES |
dc.description.references | Reddy. K, J. M., Rao. A, N., & L, K. (2019). A review on supply chain performance measurement systems. Procedia Manufacturing, 30, 40-47. doi:10.1016/j.promfg.2019.02.007 | es_ES |
dc.description.references | Jafari, M., Shahanaghi, K., & Tootooni, M. (2015). Developing a Robust Strategy Map in Balanced Scorecard Model Using Scenario Planning. Mathematical Problems in Engineering, 2015, 1-9. doi:10.1155/2015/102606 | es_ES |
dc.description.references | Kaplan, R. S. (2009). Conceptual Foundations of the Balanced Scorecard. Handbooks of Management Accounting Research, 1253-1269. doi:10.1016/s1751-3243(07)03003-9 | es_ES |
dc.description.references | Khakbaz, S. B., & Hajiheydari, N. (2015). Proposing a basic methodology for developing balanced scorecard by system dynamics approach. Kybernetes, 44(6/7), 1049-1066. doi:10.1108/k-12-2014-0287 | es_ES |
dc.description.references | Lehr, T., Lorenz, U., Willert, M., & Rohrbeck, R. (2017). Scenario-based strategizing: Advancing the applicability in strategists’ teams. Technological Forecasting and Social Change, 124, 214-224. doi:10.1016/j.techfore.2017.06.026 | es_ES |
dc.description.references | Melkonyan, A., Krumme, K., Gruchmann, T., Spinler, S., Schumacher, T., & Bleischwitz, R. (2019). Scenario and strategy planning for transformative supply chains within a sustainable economy. Journal of Cleaner Production, 231, 144-160. doi:10.1016/j.jclepro.2019.05.222 | es_ES |
dc.description.references | Meredith, J. (1993). Theory Building through Conceptual Methods. International Journal of Operations & Production Management, 13(5), 3-11. doi:10.1108/01443579310028120 | es_ES |
dc.description.references | Nielsen, S., & Nielsen, E. H. (2011). Discussing feedback system thinking in relation to scenario evaluation in a balanced scorecard setup. Production Planning & Control, 23(6), 436-451. doi:10.1080/09537287.2011.561816 | es_ES |
dc.description.references | Rodriguez, R. R., Saiz, J. J. A., & Bas, A. O. (2009). Quantitative relationships between key performance indicators for supporting decision-making processes. Computers in Industry, 60(2), 104-113. doi:10.1016/j.compind.2008.09.002 | es_ES |
dc.description.references | Rodriguez-Rodriguez, R., Alfaro Saiz, J. J., Ortiz Bas, A., Carot, J. M., & Jabaloyes, J. M. (2010). Building internal business scenarios based on real data from a performance measurement system. Technological Forecasting and Social Change, 77(1), 50-62. doi:10.1016/j.techfore.2009.07.006 | es_ES |
dc.description.references | Shahin, A., & Mahbod, M. A. (2007). Prioritization of key performance indicators. International Journal of Productivity and Performance Management, 56(3), 226-240. doi:10.1108/17410400710731437 | es_ES |
dc.description.references | Sanchez-Marquez, R., Albarracin Guillem, J. M., Vicens-Salort, E., & Jabaloyes Vivas, J. (2018). A statistical system management method to tackle data uncertainty when using key performance indicators of the balanced scorecard. Journal of Manufacturing Systems, 48, 166-179. doi:10.1016/j.jmsy.2018.07.010 | es_ES |
dc.description.references | Thanki, S., & Thakkar, J. (2018). A quantitative framework for lean and green assessment of supply chain performance. International Journal of Productivity and Performance Management, 67(2), 366-400. doi:10.1108/ijppm-09-2016-0215 | es_ES |
dc.description.references | Tsalis, A. T., Nikolaou, E. I., Grigoroudis, E., & Tsagarakis, P. K. (2015). A dynamic sustainability Balanced Scorecard methodology as a navigator for exploring the dynamics and complexity of corporate sustainability strategy. Civil Engineering and Environmental Systems, 32(4), 281-300. doi:10.1080/10286608.2015.1006129 | es_ES |
dc.description.references | Verdecho, M.-J., Alfaro-Saiz, J.-J., Rodriguez-Rodriguez, R., & Ortiz-Bas, A. (2012). A multi-criteria approach for managing inter-enterprise collaborative relationships. Omega, 40(3), 249-263. doi:10.1016/j.omega.2011.07.004 | es_ES |
dc.description.references | Visser, M. P., & Chermack, T. J. (2009). Perceptions of the relationship between scenario planning and firm performance: A qualitative study. Futures, 41(9), 581-592. doi:10.1016/j.futures.2009.04.010 | es_ES |
dc.description.references | Wold, S., Ruhe, A., Wold, H., & Dunn, III, W. J. (1984). The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM Journal on Scientific and Statistical Computing, 5(3), 735-743. doi:10.1137/0905052 | es_ES |
dc.description.references | Wold, S., Trygg, J., Berglund, A., & Antti, H. (2001). Some recent developments in PLS modeling. Chemometrics and Intelligent Laboratory Systems, 58(2), 131-150. doi:10.1016/s0169-7439(01)00156-3 | es_ES |
dc.description.references | Wiktorsson, M., Andersson, C., & Turunen, V. (2018). Leading towards high-performance manufacturing – Enabling indicators in early R&D phases ensuring future KPI outcome. Procedia Manufacturing, 25, 223-230. doi:10.1016/j.promfg.2018.06.077 | es_ES |
dc.description.references | Xia, D., Yu, Q., Gao, Q., & Cheng, G. (2017). Sustainable technology selection decision-making model for enterprise in supply chain: Based on a modified strategic balanced scorecard. Journal of Cleaner Production, 141, 1337-1348. doi:10.1016/j.jclepro.2016.09.083 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |