- -

Automatic QoE evaluation for asymmetric encoding of 3D videos for DASH streaming service

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic QoE evaluation for asymmetric encoding of 3D videos for DASH streaming service

Mostrar el registro completo del ítem

Guzman Castillo, PF.; Arce Vila, P.; Guerri Cebollada, JC. (2020). Automatic QoE evaluation for asymmetric encoding of 3D videos for DASH streaming service. Ad Hoc Networks. 106:1-15. https://doi.org/10.1016/j.adhoc.2020.102184

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166219

Ficheros en el ítem

Metadatos del ítem

Título: Automatic QoE evaluation for asymmetric encoding of 3D videos for DASH streaming service
Autor: Guzman Castillo, Paola Fernanda Arce Vila, Pau Guerri Cebollada, Juan Carlos
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] The paper is based on the study of the performance of a Dynamic Adaptive Streaming over HTTP (DASH) system in the context of 3D video streaming, using different scenarios and network conditions, specifically with ...[+]
Palabras clave: Performance evaluation , 3D video , DASH , Puppeteer , Quality of Experience , Testbed evaluation , ITU-T P.1203
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Ad Hoc Networks. (issn: 1570-8705 )
DOI: 10.1016/j.adhoc.2020.102184
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.adhoc.2020.102184
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109/
Agradecimientos:
This work has been partially supported by Spanish Ministry of Science, Innovation and Universities and by European Union through grant RTI2018-098085-BC41 (MCUI/AEI/FEDER), SSENCE project (Telefonica Chair UPV), PROMETEO/2019/109 ...[+]
Tipo: Artículo

References

Cisco, “Cisco Visual Networking Index : forecast and Trends, 2017–2022 White Paper.” 2019.

ISO/IEC, “ISO/IEC 23009-1 Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: media presentation description and segment formats Technologies, 2019,” 2019.

T. Su, A. Javadtalab, A. Yassine, and S. Shirmohammadi, “A DASH-based 3D multi-view video rate control system A DASH-Based 3D Multi-view Video Rate Control System,” 2014. [+]
Cisco, “Cisco Visual Networking Index : forecast and Trends, 2017–2022 White Paper.” 2019.

ISO/IEC, “ISO/IEC 23009-1 Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: media presentation description and segment formats Technologies, 2019,” 2019.

T. Su, A. Javadtalab, A. Yassine, and S. Shirmohammadi, “A DASH-based 3D multi-view video rate control system A DASH-Based 3D Multi-view Video Rate Control System,” 2014.

Hoßfeld, T., Seufert, M., Sieber, C., Zinner, T., & Tran-Gia, P. (2015). Identifying QoE optimal adaptation of HTTP adaptive streaming based on subjective studies. Computer Networks, 81, 320-332. doi:10.1016/j.comnet.2015.02.015

Barman, N., & Martini, M. G. (2019). QoE Modeling for HTTP Adaptive Video Streaming–A Survey and Open Challenges. IEEE Access, 7, 30831-30859. doi:10.1109/access.2019.2901778

“Puppeteer.” [Online]. Available: https://github.com/GoogleChrome/puppeteer. [Accessed: 01-Jul-2019].

Akar, G. B., Tekalp, A. M., Fehn, C., & Civanlar, M. R. (2007). Transport Methods in 3DTV—A Survey. IEEE Transactions on Circuits and Systems for Video Technology, 17(11), 1622-1630. doi:10.1109/tcsvt.2007.905365

Merkle, P., Müller, K., & Wiegand, T. (2010). 3D video: acquisition, coding, and display. IEEE Transactions on Consumer Electronics, 56(2), 946-950. doi:10.1109/tce.2010.5506024

Gürler, C. G., Görkemli, B., Saygili, G., & Tekalp, A. M. (2011). Flexible Transport of 3-D Video Over Networks. Proceedings of the IEEE, 99(4), 694-707. doi:10.1109/jproc.2010.2100010

Vetro, A., Wiegand, T., & Sullivan, G. J. (2011). Overview of the Stereo and Multiview Video Coding Extensions of the H.264/MPEG-4 AVC Standard. Proceedings of the IEEE, 99(4), 626-642. doi:10.1109/jproc.2010.2098830

Hannuksela, M. M., Gabbouj, M., Rusanovskyy, D., Su, W., Chen, L., Li, R., … Li, H. (2013). Multiview-Video-Plus-Depth Coding Based on the Advanced Video Coding Standard. IEEE Transactions on Image Processing, 22(9), 3449-3458. doi:10.1109/tip.2013.2269274

Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison. IEEE Transactions on Broadcasting, 57(2), 165-182. doi:10.1109/tbc.2011.2104671

T. Wiegand and G.J. Sullivan, “The H.264/AVC Video Coding Standard,” no. August 1999, pp. 148–153, 2007.

Sullivan, G. J., Ohm, J.-R., Han, W.-J., & Wiegand, T. (2012). Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video Technology, 22(12), 1649-1668. doi:10.1109/tcsvt.2012.2221191

Tech, G., Chen, Y., Muller, K., Ohm, J.-R., Vetro, A., & Wang, Y.-K. (2016). Overview of the Multiview and 3D Extensions of High Efficiency Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 26(1), 35-49. doi:10.1109/tcsvt.2015.2477935

Wang, J., Wang, S., & Wang, Z. (2017). Asymmetrically Compressed Stereoscopic 3D Videos: Quality Assessment and Rate-Distortion Performance Evaluation. IEEE Transactions on Image Processing, 26(3), 1330-1343. doi:10.1109/tip.2017.2651387

Battisti, F., Carli, M., Le Callet, P., & Paudyal, P. (2018). Toward the Assessment of Quality of Experience for Asymmetric Encoding in Immersive Media. IEEE Transactions on Broadcasting, 64(2), 392-406. doi:10.1109/tbc.2018.2828607

ITU-T, “ITU-T.P910. Subjective video quality assessment methods for multimedia applications,” 2008.

H.K. Yarnagula, S. Luhadia, S. Datta, and V. Tamarapalli, “Quality of Experience Assessment of Rate Adaptation Algorithms in DASH : an Experimental Study,” pp. 1–8, 2016.

Bentaleb, A., Taani, B., Begen, A. C., Timmerer, C., & Zimmermann, R. (2019). A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP. IEEE Communications Surveys & Tutorials, 21(1), 562-585. doi:10.1109/comst.2018.2862938

C. Timmerer, M. Maiero, and B. Rainer, “Which Adaptation Logic ? An Objective and Subjective Performance Evaluation of HTTP-based Adaptive Media Streaming Systems.”

Seufert, M., Egger, S., Slanina, M., Zinner, T., Hobfeld, T., & Tran-Gia, P. (2015). A Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Communications Surveys & Tutorials, 17(1), 469-492. doi:10.1109/comst.2014.2360940

Chen, Y., Wu, K., & Zhang, Q. (2015). From QoS to QoE: A Tutorial on Video Quality Assessment. IEEE Communications Surveys & Tutorials, 17(2), 1126-1165. doi:10.1109/comst.2014.2363139

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612. doi:10.1109/tip.2003.819861

Z.L. Li and A. Aaron, “Toward A Practical Perceptual Video Quality Metric,” Netflix TechBlog.

ITU-T, “ITU-T. P915. Subjective assessment methods for 3D video quality,” 2016.

ITU Telecommunication Standardization Sector, “ITU-T Rec P 1203 Models and tools for quality assessment of streamed media,” 2017.

R. I.-T. J.247, “Objective perceptual multimedia video quality measurement in the presence of a full reference.,” Recomm. ITU-T J.247, 2008.

Shaka Player Demo. [Online]. Available:https://shaka-player-demo.appspot.com. [Accessed: 01-Jun-2019].

Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A generic quantitative relationship between quality of experience and quality of service. IEEE Network, 24(2), 36-41. doi:10.1109/mnet.2010.5430142

Big Buck Bunny. [Online]. Available: https://peach.blender.org. [Accessed: 01-May-2019].

S. Lederer, C. Müller, and C. Timmerer, “Dynamic Adaptive Streaming over HTTP Dataset,” pp. 89–94, 2012.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem