- -

Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhang, Zihou es_ES
dc.contributor.author Montesinos Santalucia, Vicente es_ES
dc.contributor.author Liu, Chunyan es_ES
dc.date.accessioned 2021-05-13T03:31:56Z
dc.date.available 2021-05-13T03:31:56Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0252-9602 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166261
dc.description.abstract [EN] We obtain characterizations of nearly strong convexity and nearly very convexity by using the dual concept of S and WS points, related to the so-called Rolewicz's property (alpha). We give a characterization of those points in terms of continuity properties of the identity mapping. The connection between these two geometric properties is established, and finally an application to approximative compactness is given. es_ES
dc.description.sponsorship The first named author was supported in part by the National Natural Science Foundation of China (11671252, 11771248); The second named author is supported by Proyecto MTM2014-57838-C2-2-P (Spain) and the Universitat Politècnica de València (Spain). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Acta Mathematica Scientia es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Banach spaces es_ES
dc.subject Nearly strongly convex spaces es_ES
dc.subject Nearly very convex spaces es_ES
dc.subject Kadec property es_ES
dc.subject Radon-Riesz property es_ES
dc.subject Approximative compactness es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10473-020-0205-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11671252/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11771248/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Zhang, Z.; Montesinos Santalucia, V.; Liu, C. (2020). Some Metric and Topological Properties of Nearly Strongly and Nearly Very Convex Spaces. Acta Mathematica Scientia. 40(2):369-378. https://doi.org/10.1007/s10473-020-0205-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10473-020-0205-7 es_ES
dc.description.upvformatpinicio 369 es_ES
dc.description.upvformatpfin 378 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\407886 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Bandyopadhyay P, Li Y J, Lin B L, Narayana D. Proximinality in Banach space. J Math Anal Appl, 2008, 341: 309–317 es_ES
dc.description.references Diestel J. Sequences and Series in Banach Spaces. GTM 92. Springer, 1984 es_ES
dc.description.references Szymon Draga. On weakly uniformly rotund norms which are not locally uniformly rotund. Colloquium Mathematicum, 2015, 138(2): 241–246 es_ES
dc.description.references Efimov N W, Stechkin S B. Approximate compactness and Chebyshev sets. Sorit Mathematics, 1961, 2: 1226–1228 es_ES
dc.description.references Fabian M, Habala P, Hájek P, Montesinos V, Zizler V. Banach Space Theory; The Basis for Linear and NonLinear Analysis. Springer, 2011 es_ES
dc.description.references Fang X N, Wang J H. Convexity and Continuity of the metric projection. Math Appl, 2001, 14(1): 47–51 (in Chinesse) es_ES
dc.description.references Giles J R, Gregory D A, Sims B. Geometrical implications of upper semi-continuity of the duality mapping on Banach space. Pacific J Math, 1978, 79(1): 99–109 es_ES
dc.description.references Guirao A J, Montesinos V. A note in approximative compactness and continuity of the metric projection in Banach spaces. J Convex Anal, 2011, 18: 341–397 es_ES
dc.description.references Hájek P, Montesinos V, Zizler V. Geometry and Gâteaux smoothness in separable Banach spaces. Operators and Matrices, 2012, 6(2): 201–232 es_ES
dc.description.references Hudzik H, Kowalewski W, Lewicki G. Approximative compactness and full rotundity in Musielak-Orlicz space and Lorentz-Orlice spaces. Z Anal Anwen Aungen, 2006, 25: 163–192 es_ES
dc.description.references Molto A, Orihuela J, Troyanski S, Valdivia M. A Nonlinear Transfer Technique for Renorming//Lecture Notes in Math 1951. Berlin: Springer, 2009 es_ES
dc.description.references Montesinos V. Drop property equals reflexivity. Studia Mathm, 1987, 87(1): 93–100 es_ES
dc.description.references Wang J H, Zhang Z H. Characterization of the property (C - κ). Acta Math Sci Ser A Chinese Ed, 1997, 17A(3): 280–284 es_ES
dc.description.references Zhang Z H, Liu C Y. Convexity and existence of the farthest point. Abstract and Applied Analysis 2011. Article ID 139597. Doi:10.1155/2011/139597, 2011 es_ES
dc.description.references Zhang Z H, Liu C Y. Convexity and proximinality in Banach space. J Funct Spaces Appl Art, ID 724120, 2012 es_ES
dc.description.references Zhang Z H, Montesinos V, Liu C Y, Gong W Z. Geometric properties and continuity of pre-duality mapping in Banach spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A, Matemáticas, 2015, 109(2): 407–416 es_ES
dc.description.references Zhang Z H, Shi Z R. Convexities and approximative compactness and continuity of metric projection in Banach spaces. J Approx Theory, 2009, 2(161): 800–812 es_ES
dc.description.references Zhang Z H, Zhou Y, Liu C Y. Near convexity, near smoothness and approximative compactness of half space in Banach space. Acta Math Sinica (Engl Ser), 2016, 32(5): 599–606 es_ES
dc.description.references Liu C Y, Zhang Z H, Zhou Y. A note approximative compactness and midpoint locally K-uniform rotundity in Banach spaces. Acta Mathematica Scientia, 2018, 38B(2): 643–650 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem