Mostrar el registro sencillo del ítem
dc.contributor.author | Lizama, Carlos | es_ES |
dc.contributor.author | Murillo Arcila, Marina | es_ES |
dc.date.accessioned | 2021-05-14T03:31:37Z | |
dc.date.available | 2021-05-14T03:31:37Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.issn | 1078-0947 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166340 | |
dc.description.abstract | [EN] In this paper we investigate conditions for maximal regularity of Volterra equations defined on the Lebesgue space of sequences l(p)(Z) by using Blunck's theorem on the equivalence between operator-valued l(p)-multipliers and the notion of R-boundedness. We show sufficient conditions for maximal l(p) - l(q) regularity of solutions of such problems solely in terms of the data. We also explain the significance of kernel sequences in the theory of viscoelasticity, establishing a new and surprising connection with schemes of approximation of fractional models. | es_ES |
dc.description.sponsorship | The first author was partially supported by FONDECYT, Grant No 1180041. The second author was supported by MEC, grant MTM2016-75963-P and GVA/2018/110. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Mathematical Sciences | es_ES |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Maximal regularity | es_ES |
dc.subject | Time-stepping schemes | es_ES |
dc.subject | Discrete Volterra equations | es_ES |
dc.subject | Nonlocal operators | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Discrete maximal regularity for Volterra equations and nonlocal time-stepping schemes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/dcds.2020020 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2018%2F110/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1180041/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Lizama, C.; Murillo Arcila, M. (2020). Discrete maximal regularity for Volterra equations and nonlocal time-stepping schemes. Discrete and Continuous Dynamical Systems. 40(1):509-528. https://doi.org/10.3934/dcds.2020020 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/dcds.2020020 | es_ES |
dc.description.upvformatpinicio | 509 | es_ES |
dc.description.upvformatpfin | 528 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\402861 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |