Mostrar el registro sencillo del ítem
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.date.accessioned | 2021-05-18T06:58:17Z | |
dc.date.available | 2021-05-18T06:58:17Z | |
dc.date.issued | 2021-05-18T06:58:17Z | |
dc.identifier.uri | http://hdl.handle.net/10251/166459 | |
dc.description.abstract | Este objeto presenta un sistema dinámico que involucra a dos magnitudes, x(t) e y(t), que evolucionan de manera discreta (a intervalos temporales discretos) interactuando entre ellas (por ejemplo, dos empresas que interactúan, dos especies en coexistencia, modelos de dos compartimentos en farmacología, etc.). El sistema viene descrito por las ecuaciones x(t+1) = 0.5x(t)+0.4y(t) y(t+1) = -p*x(t)+1.1y(t) donde p es un parámetro de cuyo valor depende el comportamiento del sistema. En el objeto se pretende visualizar las trayectorias de diversos puntos iniciales (x,y)^T sometidos a dicho comportamiento discreto, para distintos valores de p. Los vértices y puntos medios de los lados del cuadrado [-1,1]x[-1,1] son considerados por defecto como puntos de arranque de sus respectivas trayectorias. Además, el usuario introducirá un punto adicional dentro del mismo cuadrado, cuya trayectoria se superpondrá a las de los ocho puntos anteriores. Haciendo un recorrido adecuado por distintos valores de p, se pueden observar comportamientos diversos típicos de los sistemas dinámicos discretos. Este comportamiento está íntimamente asociado a los valores y vectores propios de la matriz del sistema. Para cada valor de p se muestran tales valores y vectores propios. El objeto también presenta la evolución del punto personalizado a lo largo del tiempo. | es_ES |
dc.description.uri | https://laboratoriosvirtuales.upv.es/eslabon/sdd1 | es_ES |
dc.language | Español | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sistemas dinámicos | es_ES |
dc.subject | Ecuaciones en diferencias | es_ES |
dc.subject | Comportamiento asintótico | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Sistema dinámico lineal discreto | es_ES |
dc.type | Objeto de aprendizaje | es_ES |
dc.lom.learningResourceType | Laboratorio virtual de simulación | es_ES |
dc.lom.interactivityLevel | Medio | es_ES |
dc.lom.semanticDensity | Medio | es_ES |
dc.lom.intendedEndUserRole | Alumno | es_ES |
dc.lom.context | Primer ciclo | es_ES |
dc.lom.difficulty | Dificultad media | es_ES |
dc.lom.typicalLearningTime | 20 minutos | es_ES |
dc.lom.educationalDescription | -Da valores al parámetro p, 0 <= p <= 1. -Elige las coordenadas x0 e y0 de un punto (adicional a los considerados por defecto) dentro del cuadrado unidad [-1,1]x[-1,1]) para observar su trayectoria asociada. -Selecciona el número, 0<k<=100, de pasos de la evolución que quieres simular (con k pequeño, podrás observar cómo empieza el comportamiento del sistema; con k grande podrás observar el comportamiento a largo plazo, es decir, el asintótico). | es_ES |
dc.lom.educationalLanguage | Español | es_ES |
dc.upv.convocatoriaDocenciaRed | 2020-2021 | es_ES |
dc.upv.ambito | PUBLICO | es_ES |
dc.subject.unesco | 1299 - Otras especialidades matemáticas | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Izquierdo Sebastián, J. (2021). Sistema dinámico lineal discreto. http://hdl.handle.net/10251/166459 | es_ES |
dc.description.accrualMethod | DER | es_ES |
dc.relation.pasarela | DER\32426 | es_ES |