- -

Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Costa, C. M. es_ES
dc.contributor.author Sabater i Serra, Roser es_ES
dc.contributor.author Balado, A. Andrio es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros-Méndez, S. es_ES
dc.date.accessioned 2021-05-20T03:32:41Z
dc.date.available 2021-05-20T03:32:41Z
dc.date.issued 2020-09-09 es_ES
dc.identifier.issn 0032-3861 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166516
dc.description.abstract [EN] Polymer-ceramic composites based on poly(vinylidene fluoride) and ceramic particles of the inorganic piezoelectric material Pb(Zr0.53Ti0.47)O-3 were prepared with different particle concentrations and size by solution casting in the non-polar (alpha- ) and polar (beta-) phases of the polymer. The influence of amount and particle size on the overall dielectric response of alpha and beta-phase matrix composites was analyzed, focusing on the dielectric relaxation processes. The cooperative segmental motions within the PVDF amorphous phase (low-temperature beta-relaxation), are strongly affected by the inclusion of the fillers, both in the alpha and beta-phase matrix composites. The complex permittivity analyzed by the Havriliak-Negami equation model (NH) and the fragility parameter indicates that the PZT ceramic filler induces heterogeneity in the polymer matrix. For alpha-PVDF/PZT composites, the strength of the relaxation process increases with increasing the filler amount and it is nearly independent on particle size. The behavior of the HN shape parameters, more noticeable for filler content of 20% or higher, shows that the relaxation dynamics is influenced by the polymer nucleation kinetics. PVDF/PZT composites in beta-phase matrix exhibit a strong increase in the relaxation strength for PVDF/PZT composites with 40% of ceramic fillers, and the process becomes more symmetric when the amount of filler increases. The detected variations in the relaxation dynamics in both alpha and beta-phase matrix composites is strongly affected by the ceramic filler and the interface between the ceramic microparticles and the polymer. es_ES
dc.description.sponsorship The authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2019, and UID/EEA/04436/2019; and project PTDC/FIS-MAC/28157/2017. The author also thanks the FCT for financial support under grant SFRH/BPD/112547/2015 (C.M.C.). Financial support from the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively, are acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank Prof. R. Gregorio Filho, University Federal of S. Carlos, Brazil, for providing the ceramic particles es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Polymer es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Composites es_ES
dc.subject Dielectric analysis es_ES
dc.subject PVDF es_ES
dc.subject PZT es_ES
dc.subject Smart materials es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.polymer.2020.122811 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04650%2F2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//UID%2FEEA%2F04436%2F2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-MAC%2F28157%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//PIBA-2018-06/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C43/ES/DESARROLLO DE ANDAMIAJES BIOMIMETICOS ACTIVOS PARA EL ESTUDIO DE MICROENTORNO DE TUMOR EN OSTEOSARCOMA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Costa, CM.; Sabater I Serra, R.; Balado, AA.; Gómez Ribelles, JL.; Lanceros-Méndez, S. (2020). Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Polymer. 204:1-9. https://doi.org/10.1016/j.polymer.2020.122811 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.polymer.2020.122811 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 204 es_ES
dc.relation.pasarela S\417007 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Newnham, R. E., Skinner, D. P., & Cross, L. E. (1978). Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin, 13(5), 525-536. doi:10.1016/0025-5408(78)90161-7 es_ES
dc.description.references Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006 es_ES
dc.description.references Sencadas, V., Moreira, M. V., Lanceros-Méndez, S., Pouzada, A. S., & Gregório Filho, R. (2006). α- to β Transformation on PVDF Films Obtained by Uniaxial Stretch. Materials Science Forum, 514-516, 872-876. doi:10.4028/www.scientific.net/msf.514-516.872 es_ES
dc.description.references Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527 es_ES
dc.description.references Sencadas, V., Costa, C. M., Gómez Ribelles, J. L., & Lanceros-Mendez, S. (2009). Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 45(5), 1328-1335. doi:10.1007/s10853-009-4086-3 es_ES
dc.description.references Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052 es_ES
dc.description.references Martins, P., Caparros, C., Gonçalves, R., Martins, P. M., Benelmekki, M., Botelho, G., & Lanceros-Mendez, S. (2012). Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-Poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications. The Journal of Physical Chemistry C, 116(29), 15790-15794. doi:10.1021/jp3038768 es_ES
dc.description.references Correia, D. M., Costa, C. M., Lizundia, E., Sabater i Serra, R., Gómez-Tejedor, J. A., Biosca, L. T., … Lanceros-Méndez, S. (2019). Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. The Journal of Physical Chemistry C, 123(45), 27917-27926. doi:10.1021/acs.jpcc.9b07986 es_ES
dc.description.references Lopes, A. C., Caparros, C., Ferdov, S., & Lanceros-Mendez, S. (2012). Influence of zeolite structure and chemistry on the electrical response and crystallization phase of poly(vinylidene fluoride). Journal of Materials Science, 48(5), 2199-2206. doi:10.1007/s10853-012-6995-9 es_ES
dc.description.references Sencadas, V., Lanceros-Méndez, S., Sabater i Serra, R., Andrio Balado, A., & Gómez Ribelles, J. L. (2012). Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. The European Physical Journal E, 35(5). doi:10.1140/epje/i2012-12041-x es_ES
dc.description.references Boyd, R. H. (1985). Relaxation processes in crystalline polymers: experimental behaviour — a review. Polymer, 26(3), 323-347. doi:10.1016/0032-3861(85)90192-2 es_ES
dc.description.references Boyd, R. H. (1985). Relaxation processes in crystalline polymers: molecular interpretation — a review. Polymer, 26(8), 1123-1133. doi:10.1016/0032-3861(85)90240-x es_ES
dc.description.references Tian, L., Huang, X., & Tang, X. (2004). Study on morphology behavior of PVDF-based electrolytes. Journal of Applied Polymer Science, 92(6), 3839-3842. doi:10.1002/app.20402 es_ES
dc.description.references Wong, G. H. ., Chua, B. ., Li, L., & Lai, M. . (2001). Processing of thermally stable doped perovskite PZT ceramics. Journal of Materials Processing Technology, 113(1-3), 450-455. doi:10.1016/s0924-0136(01)00631-8 es_ES
dc.description.references Scott, J. F. (2005). New developments on FRAMs: [3D] structures and all-perovskite FETs. Materials Science and Engineering: B, 120(1-3), 6-12. doi:10.1016/j.mseb.2005.02.047 es_ES
dc.description.references Haertling, G. H. (1999). Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society, 82(4), 797-818. doi:10.1111/j.1151-2916.1999.tb01840.x es_ES
dc.description.references Wu, A., Vilarinho, P. M., Shvartsman, V. V., Suchaneck, G., & Kholkin, A. L. (2005). Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy. Nanotechnology, 16(11), 2587-2595. doi:10.1088/0957-4484/16/11/020 es_ES
dc.description.references Payo, I., & Hale, J. M. (2011). Sensitivity analysis of piezoelectric paint sensors made up of PZT ceramic powder and water-based acrylic polymer. Sensors and Actuators A: Physical, 168(1), 77-89. doi:10.1016/j.sna.2011.04.008 es_ES
dc.description.references Zhou, Q. ., Chan, H. L. ., & Choy, C. . (2000). PZT ceramic/ceramic 0–3 nanocomposite films for ultrasonic transducer applications. Thin Solid Films, 375(1-2), 95-99. doi:10.1016/s0040-6090(00)01232-3 es_ES
dc.description.references Zhang, Y., Bao, Y., Zhang, D., & Bowen, C. R. (2015). Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications. Journal of the American Ceramic Society, 98(10), 2980-2983. doi:10.1111/jace.13797 es_ES
dc.description.references Furukawa, T., Ishida, K., & Fukada, E. (1979). Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 50(7), 4904-4912. doi:10.1063/1.325592 es_ES
dc.description.references Yamada, T., Ueda, T., & Kitayama, T. (1982). Piezoelectricity of a high‐content lead zirconate titanate/polymer composite. Journal of Applied Physics, 53(6), 4328-4332. doi:10.1063/1.331211 es_ES
dc.description.references Marra, S. (1999). The mechanical properties of lead-titanate/polymer 0–3 composites. Composites Science and Technology, 59(14), 2163-2173. doi:10.1016/s0266-3538(99)00073-1 es_ES
dc.description.references De-Qing, Z., Da-Wei, W., Jie, Y., Quan-Liang, Z., Zhi-Ying, W., & Mao-Sheng, C. (2008). Structural and Electrical Properties of PZT/PVDF Piezoelectric Nanocomposites Prepared by Cold-Press and Hot-Press Routes. Chinese Physics Letters, 25(12), 4410-4413. doi:10.1088/0256-307x/25/12/063 es_ES
dc.description.references Jain, A., K. J., P., Sharma, A. K., Jain, A., & P.N, R. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 55(7), 1589-1616. doi:10.1002/pen.24088 es_ES
dc.description.references Firmino Mendes, S., Costa, C. M., Sencadas, V., Serrado Nunes, J., Costa, P., Gregorio, R., & Lanceros-Méndez, S. (2009). Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Applied Physics A, 96(4), 899-908. doi:10.1007/s00339-009-5141-2 es_ES
dc.description.references Wang, Y., Yao, M., Ma, R., Yuan, Q., Yang, D., Cui, B., … Hu, D. (2020). Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. Journal of Materials Chemistry A, 8(3), 884-917. doi:10.1039/c9ta11527g es_ES
dc.description.references Alexandre, M., Bessaguet, C., David, C., Dantras, E., & Lacabanne, C. (2016). Piezoelectric properties of polymer/lead-free ceramic composites. Phase Transitions, 89(7-8), 708-716. doi:10.1080/01411594.2016.1206898 es_ES
dc.description.references Riquelme, S. A., & Ramam, K. (2019). Dielectric and piezoelectric properties of lead free BZT-BCT/PVDF flexible composites for electronic applications. Materials Research Express, 6(11), 116331. doi:10.1088/2053-1591/ab522c es_ES
dc.description.references Havriliak, S., & Negami, S. (1967). A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161-210. doi:10.1016/0032-3861(67)90021-3 es_ES
dc.description.references Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111 es_ES
dc.description.references Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157 es_ES
dc.description.references Costa, C. M., Firmino Mendes, S., Sencadas, V., Ferreira, A., Gregorio, R., Gómez Ribelles, J. L., & Lanceros-Méndez, S. (2010). Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Journal of Non-Crystalline Solids, 356(41-42), 2127-2133. doi:10.1016/j.jnoncrysol.2010.07.037 es_ES
dc.description.references Lanceros-Mendez, S., Moreira, M. V., Mano, J. F., Schmidt, V. H., & Bohannan, G. (2002). Dielectric Behavior in an Oriented β-PVDF Film and Chain Reorientation Upon Transverse Mechanical Deformation. Ferroelectrics, 273(1), 15-20. doi:10.1080/00150190211756 es_ES
dc.description.references Bello, A., Laredo, E., & Grimau, M. (1999). Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: Application toα−PVDF. Physical Review B, 60(18), 12764-12774. doi:10.1103/physrevb.60.12764 es_ES
dc.description.references Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906 es_ES
dc.description.references Davidson, D. W., & Cole, R. H. (1951). Dielectric Relaxation in Glycerol, Propylene Glycol, andn‐Propanol. The Journal of Chemical Physics, 19(12), 1484-1490. doi:10.1063/1.1748105 es_ES
dc.description.references Silva, M. P., Sencadas, V., Botelho, G., Machado, A. V., Rolo, A. G., Rocha, J. G., & Lanceros-Mendez, S. (2010). α- and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour. Materials Chemistry and Physics, 122(1), 87-92. doi:10.1016/j.matchemphys.2010.02.067 es_ES
dc.description.references Angell, C. A., Moynihan, C. T., & Hemmati, M. (2000). `Strong’ and `superstrong’ liquids, and an approach to the perfect glass state via phase transition. Journal of Non-Crystalline Solids, 274(1-3), 319-331. doi:10.1016/s0022-3093(00)00222-2 es_ES
dc.description.references Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9 es_ES
dc.description.references Kwon, S.-C., & Adachi, T. (2007). Strength and fracture toughness of nano and micron-silica particles bidispersed epoxy composites: evaluated by fragility parameter. Journal of Materials Science, 42(14), 5516-5523. doi:10.1007/s10853-006-1025-4 es_ES
dc.description.references Harnischfeger, P., & Jungnickel, B.-J. (1990). Features and origin of the dynamic and the nonlinear piezoelectricity in poly (vinylidene fluoride). Ferroelectrics, 109(1), 279-284. doi:10.1080/00150199008211426 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem