Mostrar el registro sencillo del ítem
dc.contributor.author | Costa, C. M. | es_ES |
dc.contributor.author | Sabater i Serra, Roser | es_ES |
dc.contributor.author | Balado, A. Andrio | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Lanceros-Méndez, S. | es_ES |
dc.date.accessioned | 2021-05-20T03:32:41Z | |
dc.date.available | 2021-05-20T03:32:41Z | |
dc.date.issued | 2020-09-09 | es_ES |
dc.identifier.issn | 0032-3861 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166516 | |
dc.description.abstract | [EN] Polymer-ceramic composites based on poly(vinylidene fluoride) and ceramic particles of the inorganic piezoelectric material Pb(Zr0.53Ti0.47)O-3 were prepared with different particle concentrations and size by solution casting in the non-polar (alpha- ) and polar (beta-) phases of the polymer. The influence of amount and particle size on the overall dielectric response of alpha and beta-phase matrix composites was analyzed, focusing on the dielectric relaxation processes. The cooperative segmental motions within the PVDF amorphous phase (low-temperature beta-relaxation), are strongly affected by the inclusion of the fillers, both in the alpha and beta-phase matrix composites. The complex permittivity analyzed by the Havriliak-Negami equation model (NH) and the fragility parameter indicates that the PZT ceramic filler induces heterogeneity in the polymer matrix. For alpha-PVDF/PZT composites, the strength of the relaxation process increases with increasing the filler amount and it is nearly independent on particle size. The behavior of the HN shape parameters, more noticeable for filler content of 20% or higher, shows that the relaxation dynamics is influenced by the polymer nucleation kinetics. PVDF/PZT composites in beta-phase matrix exhibit a strong increase in the relaxation strength for PVDF/PZT composites with 40% of ceramic fillers, and the process becomes more symmetric when the amount of filler increases. The detected variations in the relaxation dynamics in both alpha and beta-phase matrix composites is strongly affected by the ceramic filler and the interface between the ceramic microparticles and the polymer. | es_ES |
dc.description.sponsorship | The authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of Strategic Funding grants UID/FIS/04650/2019, and UID/EEA/04436/2019; and project PTDC/FIS-MAC/28157/2017. The author also thanks the FCT for financial support under grant SFRH/BPD/112547/2015 (C.M.C.). Financial support from the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively, are acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors thank Prof. R. Gregorio Filho, University Federal of S. Carlos, Brazil, for providing the ceramic particles | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Polymer | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Composites | es_ES |
dc.subject | Dielectric analysis | es_ES |
dc.subject | PVDF | es_ES |
dc.subject | PZT | es_ES |
dc.subject | Smart materials | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.polymer.2020.122811 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/FCT%2FSFRH%2FBPD%2F112547%2F2015/PT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//UID%2FFIS%2F04650%2F2019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//UID%2FEEA%2F04436%2F2019/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//PTDC%2FFIS-MAC%2F28157%2F2017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Eusko Jaurlaritza//PIBA-2018-06/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C43/ES/DESARROLLO DE ANDAMIAJES BIOMIMETICOS ACTIVOS PARA EL ESTUDIO DE MICROENTORNO DE TUMOR EN OSTEOSARCOMA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Costa, CM.; Sabater I Serra, R.; Balado, AA.; Gómez Ribelles, JL.; Lanceros-Méndez, S. (2020). Dielectric relaxation dynamics in poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Polymer. 204:1-9. https://doi.org/10.1016/j.polymer.2020.122811 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.polymer.2020.122811 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 204 | es_ES |
dc.relation.pasarela | S\417007 | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Gobierno Vasco/Eusko Jaurlaritza | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Newnham, R. E., Skinner, D. P., & Cross, L. E. (1978). Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin, 13(5), 525-536. doi:10.1016/0025-5408(78)90161-7 | es_ES |
dc.description.references | Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706. doi:10.1016/j.progpolymsci.2013.07.006 | es_ES |
dc.description.references | Sencadas, V., Moreira, M. V., Lanceros-Méndez, S., Pouzada, A. S., & Gregório Filho, R. (2006). α- to β Transformation on PVDF Films Obtained by Uniaxial Stretch. Materials Science Forum, 514-516, 872-876. doi:10.4028/www.scientific.net/msf.514-516.872 | es_ES |
dc.description.references | Sencadas, V., Gregorio, R., & Lanceros-Méndez, S. (2009). α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. Journal of Macromolecular Science, Part B, 48(3), 514-525. doi:10.1080/00222340902837527 | es_ES |
dc.description.references | Sencadas, V., Costa, C. M., Gómez Ribelles, J. L., & Lanceros-Mendez, S. (2009). Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the Avrami equation. Journal of Materials Science, 45(5), 1328-1335. doi:10.1007/s10853-009-4086-3 | es_ES |
dc.description.references | Sencadas, V., Gregorio Filho, R., & Lanceros-Mendez, S. (2006). Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 352(21-22), 2226-2229. doi:10.1016/j.jnoncrysol.2006.02.052 | es_ES |
dc.description.references | Martins, P., Caparros, C., Gonçalves, R., Martins, P. M., Benelmekki, M., Botelho, G., & Lanceros-Mendez, S. (2012). Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-Poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications. The Journal of Physical Chemistry C, 116(29), 15790-15794. doi:10.1021/jp3038768 | es_ES |
dc.description.references | Correia, D. M., Costa, C. M., Lizundia, E., Sabater i Serra, R., Gómez-Tejedor, J. A., Biosca, L. T., … Lanceros-Méndez, S. (2019). Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. The Journal of Physical Chemistry C, 123(45), 27917-27926. doi:10.1021/acs.jpcc.9b07986 | es_ES |
dc.description.references | Lopes, A. C., Caparros, C., Ferdov, S., & Lanceros-Mendez, S. (2012). Influence of zeolite structure and chemistry on the electrical response and crystallization phase of poly(vinylidene fluoride). Journal of Materials Science, 48(5), 2199-2206. doi:10.1007/s10853-012-6995-9 | es_ES |
dc.description.references | Sencadas, V., Lanceros-Méndez, S., Sabater i Serra, R., Andrio Balado, A., & Gómez Ribelles, J. L. (2012). Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. The European Physical Journal E, 35(5). doi:10.1140/epje/i2012-12041-x | es_ES |
dc.description.references | Boyd, R. H. (1985). Relaxation processes in crystalline polymers: experimental behaviour — a review. Polymer, 26(3), 323-347. doi:10.1016/0032-3861(85)90192-2 | es_ES |
dc.description.references | Boyd, R. H. (1985). Relaxation processes in crystalline polymers: molecular interpretation — a review. Polymer, 26(8), 1123-1133. doi:10.1016/0032-3861(85)90240-x | es_ES |
dc.description.references | Tian, L., Huang, X., & Tang, X. (2004). Study on morphology behavior of PVDF-based electrolytes. Journal of Applied Polymer Science, 92(6), 3839-3842. doi:10.1002/app.20402 | es_ES |
dc.description.references | Wong, G. H. ., Chua, B. ., Li, L., & Lai, M. . (2001). Processing of thermally stable doped perovskite PZT ceramics. Journal of Materials Processing Technology, 113(1-3), 450-455. doi:10.1016/s0924-0136(01)00631-8 | es_ES |
dc.description.references | Scott, J. F. (2005). New developments on FRAMs: [3D] structures and all-perovskite FETs. Materials Science and Engineering: B, 120(1-3), 6-12. doi:10.1016/j.mseb.2005.02.047 | es_ES |
dc.description.references | Haertling, G. H. (1999). Ferroelectric Ceramics: History and Technology. Journal of the American Ceramic Society, 82(4), 797-818. doi:10.1111/j.1151-2916.1999.tb01840.x | es_ES |
dc.description.references | Wu, A., Vilarinho, P. M., Shvartsman, V. V., Suchaneck, G., & Kholkin, A. L. (2005). Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy. Nanotechnology, 16(11), 2587-2595. doi:10.1088/0957-4484/16/11/020 | es_ES |
dc.description.references | Payo, I., & Hale, J. M. (2011). Sensitivity analysis of piezoelectric paint sensors made up of PZT ceramic powder and water-based acrylic polymer. Sensors and Actuators A: Physical, 168(1), 77-89. doi:10.1016/j.sna.2011.04.008 | es_ES |
dc.description.references | Zhou, Q. ., Chan, H. L. ., & Choy, C. . (2000). PZT ceramic/ceramic 0–3 nanocomposite films for ultrasonic transducer applications. Thin Solid Films, 375(1-2), 95-99. doi:10.1016/s0040-6090(00)01232-3 | es_ES |
dc.description.references | Zhang, Y., Bao, Y., Zhang, D., & Bowen, C. R. (2015). Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications. Journal of the American Ceramic Society, 98(10), 2980-2983. doi:10.1111/jace.13797 | es_ES |
dc.description.references | Furukawa, T., Ishida, K., & Fukada, E. (1979). Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 50(7), 4904-4912. doi:10.1063/1.325592 | es_ES |
dc.description.references | Yamada, T., Ueda, T., & Kitayama, T. (1982). Piezoelectricity of a high‐content lead zirconate titanate/polymer composite. Journal of Applied Physics, 53(6), 4328-4332. doi:10.1063/1.331211 | es_ES |
dc.description.references | Marra, S. (1999). The mechanical properties of lead-titanate/polymer 0–3 composites. Composites Science and Technology, 59(14), 2163-2173. doi:10.1016/s0266-3538(99)00073-1 | es_ES |
dc.description.references | De-Qing, Z., Da-Wei, W., Jie, Y., Quan-Liang, Z., Zhi-Ying, W., & Mao-Sheng, C. (2008). Structural and Electrical Properties of PZT/PVDF Piezoelectric Nanocomposites Prepared by Cold-Press and Hot-Press Routes. Chinese Physics Letters, 25(12), 4410-4413. doi:10.1088/0256-307x/25/12/063 | es_ES |
dc.description.references | Jain, A., K. J., P., Sharma, A. K., Jain, A., & P.N, R. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polymer Engineering & Science, 55(7), 1589-1616. doi:10.1002/pen.24088 | es_ES |
dc.description.references | Firmino Mendes, S., Costa, C. M., Sencadas, V., Serrado Nunes, J., Costa, P., Gregorio, R., & Lanceros-Méndez, S. (2009). Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Applied Physics A, 96(4), 899-908. doi:10.1007/s00339-009-5141-2 | es_ES |
dc.description.references | Wang, Y., Yao, M., Ma, R., Yuan, Q., Yang, D., Cui, B., … Hu, D. (2020). Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. Journal of Materials Chemistry A, 8(3), 884-917. doi:10.1039/c9ta11527g | es_ES |
dc.description.references | Alexandre, M., Bessaguet, C., David, C., Dantras, E., & Lacabanne, C. (2016). Piezoelectric properties of polymer/lead-free ceramic composites. Phase Transitions, 89(7-8), 708-716. doi:10.1080/01411594.2016.1206898 | es_ES |
dc.description.references | Riquelme, S. A., & Ramam, K. (2019). Dielectric and piezoelectric properties of lead free BZT-BCT/PVDF flexible composites for electronic applications. Materials Research Express, 6(11), 116331. doi:10.1088/2053-1591/ab522c | es_ES |
dc.description.references | Havriliak, S., & Negami, S. (1967). A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161-210. doi:10.1016/0032-3861(67)90021-3 | es_ES |
dc.description.references | Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111 | es_ES |
dc.description.references | Ribeiro, C., Costa, C. M., Correia, D. M., Nunes-Pereira, J., Oliveira, J., Martins, P., … Lanceros-Méndez, S. (2018). Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 13(4), 681-704. doi:10.1038/nprot.2017.157 | es_ES |
dc.description.references | Costa, C. M., Firmino Mendes, S., Sencadas, V., Ferreira, A., Gregorio, R., Gómez Ribelles, J. L., & Lanceros-Méndez, S. (2010). Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Journal of Non-Crystalline Solids, 356(41-42), 2127-2133. doi:10.1016/j.jnoncrysol.2010.07.037 | es_ES |
dc.description.references | Lanceros-Mendez, S., Moreira, M. V., Mano, J. F., Schmidt, V. H., & Bohannan, G. (2002). Dielectric Behavior in an Oriented β-PVDF Film and Chain Reorientation Upon Transverse Mechanical Deformation. Ferroelectrics, 273(1), 15-20. doi:10.1080/00150190211756 | es_ES |
dc.description.references | Bello, A., Laredo, E., & Grimau, M. (1999). Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: Application toα−PVDF. Physical Review B, 60(18), 12764-12774. doi:10.1103/physrevb.60.12764 | es_ES |
dc.description.references | Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906 | es_ES |
dc.description.references | Davidson, D. W., & Cole, R. H. (1951). Dielectric Relaxation in Glycerol, Propylene Glycol, andn‐Propanol. The Journal of Chemical Physics, 19(12), 1484-1490. doi:10.1063/1.1748105 | es_ES |
dc.description.references | Silva, M. P., Sencadas, V., Botelho, G., Machado, A. V., Rolo, A. G., Rocha, J. G., & Lanceros-Mendez, S. (2010). α- and γ-PVDF: Crystallization kinetics, microstructural variations and thermal behaviour. Materials Chemistry and Physics, 122(1), 87-92. doi:10.1016/j.matchemphys.2010.02.067 | es_ES |
dc.description.references | Angell, C. A., Moynihan, C. T., & Hemmati, M. (2000). `Strong’ and `superstrong’ liquids, and an approach to the perfect glass state via phase transition. Journal of Non-Crystalline Solids, 274(1-3), 319-331. doi:10.1016/s0022-3093(00)00222-2 | es_ES |
dc.description.references | Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9 | es_ES |
dc.description.references | Kwon, S.-C., & Adachi, T. (2007). Strength and fracture toughness of nano and micron-silica particles bidispersed epoxy composites: evaluated by fragility parameter. Journal of Materials Science, 42(14), 5516-5523. doi:10.1007/s10853-006-1025-4 | es_ES |
dc.description.references | Harnischfeger, P., & Jungnickel, B.-J. (1990). Features and origin of the dynamic and the nonlinear piezoelectricity in poly (vinylidene fluoride). Ferroelectrics, 109(1), 279-284. doi:10.1080/00150199008211426 | es_ES |