- -

DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García, Laura es_ES
dc.contributor.author Parra-Boronat, Lorena es_ES
dc.contributor.author Jimenez, Jose M. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Mauri, Pedro V. es_ES
dc.contributor.author Lorenz, Pascal es_ES
dc.date.accessioned 2021-05-21T03:31:16Z
dc.date.available 2021-05-21T03:31:16Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166574
dc.description.abstract [EN] The increase in the world population has led to new needs for food. Precision Agriculture (PA) is one of the focuses of these policies to optimize the crops and facilitate crop management using technology. Drones have been gaining popularity in PA to perform remote sensing activities such as photo and video capture as well as other activities such as fertilization or scaring animals. These drones could be used as a mobile gateway as well, benefiting from its already designed flight plan. In this paper, we evaluate the adequacy of remote sensing drones to perform gateway functionalities, providing a guide for choosing the best drone parameters for successful WiFi data transmission between sensor nodes and the gateway in PA systems for crop monitoring and management. The novelty of this paper compared with existing mobile gateway proposals is that we are going to test the performance of the drone that is acting as a remote sensing tool to carry a low-cost gateway node to gather the data from the nodes deployed on the field. Taking this in mind, simulations of different scenarios were performed to determine if the data can be transmitted correctly or not considering different flying parameters such as speed (from 1 to 20 m/s) and flying height (from 4 to 104 m) and wireless sensor network parameters such as node density (1 node each 60 m(2) to 1 node each 5000 m(2)) and antenna coverage (25 to 200 m). We have calculated the time that each node remains with connectivity and the time required to send the data to estimate if the connection will be bad, good, or optimal. Results point out that for the maximum node density, there is only one combination that offers good connectivity (lowest velocity, the flying height of 24 m, and antenna with 25 m of coverage). For the other node densities, several combinations of flying height and antenna coverage allows good and optimal connectivity. es_ES
dc.description.sponsorship This work is partially founded by the European Union with the "Fondo Europeo Agricola de Desarrollo Rural (FEADER)-Europa invierte en zonas rurales", the MAPAMA, and Comunidad de Madrid with the IMIDRA, under the mark of the PDR-CM 2014-2020" project number PDR18-XEROCESPED, by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR, and by Conselleria de Educacion, Cultura y Deporte with the Subvenciones para la contratacion de personal investigador en fase postdoctoral, grant number APOSTD/2019/04. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Drone es_ES
dc.subject Remote sensing es_ES
dc.subject Sensor network es_ES
dc.subject WiFi es_ES
dc.subject Precision agriculture es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10196668 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/609475/EU/EURO-MEDITERRANEAN Cooperation through ERANET joint activities and beyond/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAPAMA//PDR18-XEROCESPED/ES/Ensayos de mezclas de cespitosas más sostenibles para jardinería pública/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F047/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García, L.; Parra-Boronat, L.; Jimenez, JM.; Lloret, J.; Mauri, PV.; Lorenz, P. (2020). DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture. Applied Sciences. 10(19):1-23. https://doi.org/10.3390/app10196668 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10196668 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\434496 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente es_ES
dc.description.references Agriculture and Rural Development Agriculture and Rural Development https://ec.europa.eu/agriculture/cap-post-2013/ es_ES
dc.description.references Kropff, M. J., Wallinga, J., & Lotz, L. A. P. (2007). Modelling for Precision Weed Management. Ciba Foundation Symposium 210 - Precision Agriculture: Spatial and Temporal Variability of Environmental Quality, 182-207. doi:10.1002/9780470515419.ch12 es_ES
dc.description.references Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. doi:10.1016/j.isprsjprs.2015.10.004 es_ES
dc.description.references Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. doi:10.14358/pers.81.4.281 es_ES
dc.description.references Maes, W. H., & Steppe, K. (2019). Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends in Plant Science, 24(2), 152-164. doi:10.1016/j.tplants.2018.11.007 es_ES
dc.description.references Psirofonia, P., Samaritakis, V., Eliopoulos, P., & Potamitis, I. (2017). Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies. International Journal of Agricultural Science and Technology, 5(1), 30-39. doi:10.12783/ijast.2017.0501.03 es_ES
dc.description.references Agriculture Drones Market by Offering (Hardware and Software & Services), Application (Precision Farming, Livestock Monitoring, Precision Fish Farming, and Smart Greenhouse), Component, and Geography—Global Forecast to 2024 https://www.marketsandmarkets.com/Market-Reports/agriculture-drones-market-23709764.html?gclid=CjwKCAiA-P7xBRAvEiwAow-VaRPLzQ4x9YHOwUyC4e-PBfJvjpkB4Bqx9WWIt6S-lM0FsKvUcbqLdxoC_VcQAvD_BwE es_ES
dc.description.references Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129-143. doi:10.1016/j.rse.2016.05.019 es_ES
dc.description.references Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69. doi:10.1016/j.biocon.2016.03.027 es_ES
dc.description.references Urbahs, A., & Jonaite, I. (2013). FEATURES OF THE USE OF UNMANNED AERIAL VEHICLES FOR AGRICULTURE APPLICATIONS. Aviation, 17(4), 170-175. doi:10.3846/16487788.2013.861224 es_ES
dc.description.references Raeva, P. L., Šedina, J., & Dlesk, A. (2018). Monitoring of crop fields using multispectral and thermal imagery from UAV. European Journal of Remote Sensing, 52(sup1), 192-201. doi:10.1080/22797254.2018.1527661 es_ES
dc.description.references Stehr, N. J. (2015). Drones: The Newest Technology for Precision Agriculture. Natural Sciences Education, 44(1), 89-91. doi:10.4195/nse2015.04.0772 es_ES
dc.description.references Kurkute, S. R. (2018). Drones for Smart Agriculture: A Technical Report. International Journal for Research in Applied Science and Engineering Technology, 6(4), 341-346. doi:10.22214/ijraset.2018.4061 es_ES
dc.description.references Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518. doi:10.1080/09720510.2017.1395171 es_ES
dc.description.references Valente, J., Sanz, D., Barrientos, A., Cerro, J. del, Ribeiro, Á., & Rossi, C. (2011). An Air-Ground Wireless Sensor Network for Crop Monitoring. Sensors, 11(6), 6088-6108. doi:10.3390/s110606088 es_ES
dc.description.references Hunt, E. R., & Daughtry, C. S. T. (2017). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing, 39(15-16), 5345-5376. doi:10.1080/01431161.2017.1410300 es_ES
dc.description.references Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A Review on UAV-Based Applications for Precision Agriculture. Information, 10(11), 349. doi:10.3390/info10110349 es_ES
dc.description.references Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., & Silano, G. (2019). A review on the use of drones for precision agriculture. IOP Conference Series: Earth and Environmental Science, 275, 012022. doi:10.1088/1755-1315/275/1/012022 es_ES
dc.description.references Boehm, F., & Schulte, A. (2013). Air to ground sensor data distribution using IEEE802.11N Wi-Fi network. 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). doi:10.1109/dasc.2013.6712581 es_ES
dc.description.references Stek, T. D. (2016). Drones over Mediterranean landscapes. The potential of small UAV’s (drones) for site detection and heritage management in archaeological survey projects: A case study from Le Pianelle in the Tappino Valley, Molise (Italy). Journal of Cultural Heritage, 22, 1066-1071. doi:10.1016/j.culher.2016.06.006 es_ES
dc.description.references Marín, J., Parra, L., Rocher, J., Sendra, S., Lloret, J., Mauri, P. V., & Masaguer, A. (2018). Urban Lawn Monitoring in Smart City Environments. Journal of Sensors, 2018, 1-16. doi:10.1155/2018/8743179 es_ES
dc.description.references Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66-84. doi:10.1016/j.compag.2015.08.011 es_ES
dc.description.references Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007 es_ES
dc.description.references Aqeel-ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263-270. doi:10.1016/j.csi.2011.03.004 es_ES
dc.description.references Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, I. (2009). A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors, 9(6), 4728-4750. doi:10.3390/s90604728 es_ES
dc.description.references Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036 es_ES
dc.description.references Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59-64. doi:10.1016/j.csi.2012.05.001 es_ES
dc.description.references Chaudhary, D. D., Nayse, S. P., & Waghmare, L. M. (2011). Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. International Journal of Wireless & Mobile Networks, 3(1), 140-149. doi:10.5121/ijwmn.2011.3113 es_ES
dc.description.references Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M.-C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252-265. doi:10.1016/j.compag.2011.02.004 es_ES
dc.description.references Zhu, Y., Song, J., & Dong, F. (2011). Applications of wireless sensor network in the agriculture environment monitoring. Procedia Engineering, 16, 608-614. doi:10.1016/j.proeng.2011.08.1131 es_ES
dc.description.references Keshtgari, M., & Deljoo, A. (2012). A Wireless Sensor Network Solution for Precision Agriculture Based on Zigbee Technology. Wireless Sensor Network, 04(01), 25-30. doi:10.4236/wsn.2012.41004 es_ES
dc.description.references Hwang, J., Shin, C., & Yoe, H. (2010). Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks. Sensors, 10(12), 11189-11211. doi:10.3390/s101211189 es_ES
dc.description.references Garcia-Sanchez, A.-J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288-303. doi:10.1016/j.compag.2010.12.005 es_ES
dc.description.references García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2019). Practical Design of a WSN to Monitor the Crop and its Irrigation System. Network Protocols and Algorithms, 10(4), 35. doi:10.5296/npa.v10i4.14147 es_ES
dc.description.references Popescu, D., Stoican, F., Stamatescu, G., Ichim, L., & Dragana, C. (2020). Advanced UAV–WSN System for Intelligent Monitoring in Precision Agriculture. Sensors, 20(3), 817. doi:10.3390/s20030817 es_ES
dc.description.references Specifications of the WEMOS MINI DI https://docs.wemos.cc/en/latest/d1/d1_mini.html es_ES
dc.description.references Specifications of the Node MCU https://joy-it.net/en/products/SBC-NodeMCU-ESP32 es_ES
dc.description.references Specifications of the Arduino Mega https://store.arduino.cc/arduino-mega-2560-rev3 es_ES
dc.description.references Specifications of the Arduino UNO https://store.arduino.cc/arduino-uno-rev3 es_ES
dc.description.references Specifications of the Raspberry Pi Model B+ https://www.raspberrypi-spy.co.uk/2018/03/introducing-raspberry-pi-3-b-plus-computer/ es_ES
dc.description.references Zorbas, D., Di Puglia Pugliese, L., Razafindralambo, T., & Guerriero, F. (2016). Optimal drone placement and cost-efficient target coverage. Journal of Network and Computer Applications, 75, 16-31. doi:10.1016/j.jnca.2016.08.009 es_ES
dc.description.references Parra, L., Rocher, J., García, L., Lloret, J., Tomás, J., Romero, O., … Roig, B. (2018). Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Network Protocols and Algorithms, 10(2), 95. doi:10.5296/npa.v10i2.13205 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem