Mostrar el registro sencillo del ítem
dc.contributor.author | García, Laura | es_ES |
dc.contributor.author | Parra-Boronat, Lorena | es_ES |
dc.contributor.author | Jimenez, Jose M. | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Mauri, Pedro V. | es_ES |
dc.contributor.author | Lorenz, Pascal | es_ES |
dc.date.accessioned | 2021-05-21T03:31:16Z | |
dc.date.available | 2021-05-21T03:31:16Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166574 | |
dc.description.abstract | [EN] The increase in the world population has led to new needs for food. Precision Agriculture (PA) is one of the focuses of these policies to optimize the crops and facilitate crop management using technology. Drones have been gaining popularity in PA to perform remote sensing activities such as photo and video capture as well as other activities such as fertilization or scaring animals. These drones could be used as a mobile gateway as well, benefiting from its already designed flight plan. In this paper, we evaluate the adequacy of remote sensing drones to perform gateway functionalities, providing a guide for choosing the best drone parameters for successful WiFi data transmission between sensor nodes and the gateway in PA systems for crop monitoring and management. The novelty of this paper compared with existing mobile gateway proposals is that we are going to test the performance of the drone that is acting as a remote sensing tool to carry a low-cost gateway node to gather the data from the nodes deployed on the field. Taking this in mind, simulations of different scenarios were performed to determine if the data can be transmitted correctly or not considering different flying parameters such as speed (from 1 to 20 m/s) and flying height (from 4 to 104 m) and wireless sensor network parameters such as node density (1 node each 60 m(2) to 1 node each 5000 m(2)) and antenna coverage (25 to 200 m). We have calculated the time that each node remains with connectivity and the time required to send the data to estimate if the connection will be bad, good, or optimal. Results point out that for the maximum node density, there is only one combination that offers good connectivity (lowest velocity, the flying height of 24 m, and antenna with 25 m of coverage). For the other node densities, several combinations of flying height and antenna coverage allows good and optimal connectivity. | es_ES |
dc.description.sponsorship | This work is partially founded by the European Union with the "Fondo Europeo Agricola de Desarrollo Rural (FEADER)-Europa invierte en zonas rurales", the MAPAMA, and Comunidad de Madrid with the IMIDRA, under the mark of the PDR-CM 2014-2020" project number PDR18-XEROCESPED, by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR, and by Conselleria de Educacion, Cultura y Deporte with the Subvenciones para la contratacion de personal investigador en fase postdoctoral, grant number APOSTD/2019/04. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Drone | es_ES |
dc.subject | Remote sensing | es_ES |
dc.subject | Sensor network | es_ES |
dc.subject | WiFi | es_ES |
dc.subject | Precision agriculture | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10196668 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/609475/EU/EURO-MEDITERRANEAN Cooperation through ERANET joint activities and beyond/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MAPAMA//PDR18-XEROCESPED/ES/Ensayos de mezclas de cespitosas más sostenibles para jardinería pública/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F047/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García, L.; Parra-Boronat, L.; Jimenez, JM.; Lloret, J.; Mauri, PV.; Lorenz, P. (2020). DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture. Applied Sciences. 10(19):1-23. https://doi.org/10.3390/app10196668 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10196668 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\434496 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente | es_ES |
dc.description.references | Agriculture and Rural Development Agriculture and Rural Development https://ec.europa.eu/agriculture/cap-post-2013/ | es_ES |
dc.description.references | Kropff, M. J., Wallinga, J., & Lotz, L. A. P. (2007). Modelling for Precision Weed Management. Ciba Foundation Symposium 210 - Precision Agriculture: Spatial and Temporal Variability of Environmental Quality, 182-207. doi:10.1002/9780470515419.ch12 | es_ES |
dc.description.references | Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. doi:10.1016/j.isprsjprs.2015.10.004 | es_ES |
dc.description.references | Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. doi:10.14358/pers.81.4.281 | es_ES |
dc.description.references | Maes, W. H., & Steppe, K. (2019). Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends in Plant Science, 24(2), 152-164. doi:10.1016/j.tplants.2018.11.007 | es_ES |
dc.description.references | Psirofonia, P., Samaritakis, V., Eliopoulos, P., & Potamitis, I. (2017). Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies. International Journal of Agricultural Science and Technology, 5(1), 30-39. doi:10.12783/ijast.2017.0501.03 | es_ES |
dc.description.references | Agriculture Drones Market by Offering (Hardware and Software & Services), Application (Precision Farming, Livestock Monitoring, Precision Fish Farming, and Smart Greenhouse), Component, and Geography—Global Forecast to 2024 https://www.marketsandmarkets.com/Market-Reports/agriculture-drones-market-23709764.html?gclid=CjwKCAiA-P7xBRAvEiwAow-VaRPLzQ4x9YHOwUyC4e-PBfJvjpkB4Bqx9WWIt6S-lM0FsKvUcbqLdxoC_VcQAvD_BwE | es_ES |
dc.description.references | Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129-143. doi:10.1016/j.rse.2016.05.019 | es_ES |
dc.description.references | Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69. doi:10.1016/j.biocon.2016.03.027 | es_ES |
dc.description.references | Urbahs, A., & Jonaite, I. (2013). FEATURES OF THE USE OF UNMANNED AERIAL VEHICLES FOR AGRICULTURE APPLICATIONS. Aviation, 17(4), 170-175. doi:10.3846/16487788.2013.861224 | es_ES |
dc.description.references | Raeva, P. L., Šedina, J., & Dlesk, A. (2018). Monitoring of crop fields using multispectral and thermal imagery from UAV. European Journal of Remote Sensing, 52(sup1), 192-201. doi:10.1080/22797254.2018.1527661 | es_ES |
dc.description.references | Stehr, N. J. (2015). Drones: The Newest Technology for Precision Agriculture. Natural Sciences Education, 44(1), 89-91. doi:10.4195/nse2015.04.0772 | es_ES |
dc.description.references | Kurkute, S. R. (2018). Drones for Smart Agriculture: A Technical Report. International Journal for Research in Applied Science and Engineering Technology, 6(4), 341-346. doi:10.22214/ijraset.2018.4061 | es_ES |
dc.description.references | Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518. doi:10.1080/09720510.2017.1395171 | es_ES |
dc.description.references | Valente, J., Sanz, D., Barrientos, A., Cerro, J. del, Ribeiro, Á., & Rossi, C. (2011). An Air-Ground Wireless Sensor Network for Crop Monitoring. Sensors, 11(6), 6088-6108. doi:10.3390/s110606088 | es_ES |
dc.description.references | Hunt, E. R., & Daughtry, C. S. T. (2017). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing, 39(15-16), 5345-5376. doi:10.1080/01431161.2017.1410300 | es_ES |
dc.description.references | Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A Review on UAV-Based Applications for Precision Agriculture. Information, 10(11), 349. doi:10.3390/info10110349 | es_ES |
dc.description.references | Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., & Silano, G. (2019). A review on the use of drones for precision agriculture. IOP Conference Series: Earth and Environmental Science, 275, 012022. doi:10.1088/1755-1315/275/1/012022 | es_ES |
dc.description.references | Boehm, F., & Schulte, A. (2013). Air to ground sensor data distribution using IEEE802.11N Wi-Fi network. 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). doi:10.1109/dasc.2013.6712581 | es_ES |
dc.description.references | Stek, T. D. (2016). Drones over Mediterranean landscapes. The potential of small UAV’s (drones) for site detection and heritage management in archaeological survey projects: A case study from Le Pianelle in the Tappino Valley, Molise (Italy). Journal of Cultural Heritage, 22, 1066-1071. doi:10.1016/j.culher.2016.06.006 | es_ES |
dc.description.references | Marín, J., Parra, L., Rocher, J., Sendra, S., Lloret, J., Mauri, P. V., & Masaguer, A. (2018). Urban Lawn Monitoring in Smart City Environments. Journal of Sensors, 2018, 1-16. doi:10.1155/2018/8743179 | es_ES |
dc.description.references | Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66-84. doi:10.1016/j.compag.2015.08.011 | es_ES |
dc.description.references | Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007 | es_ES |
dc.description.references | Aqeel-ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263-270. doi:10.1016/j.csi.2011.03.004 | es_ES |
dc.description.references | Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, I. (2009). A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors, 9(6), 4728-4750. doi:10.3390/s90604728 | es_ES |
dc.description.references | Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036 | es_ES |
dc.description.references | Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59-64. doi:10.1016/j.csi.2012.05.001 | es_ES |
dc.description.references | Chaudhary, D. D., Nayse, S. P., & Waghmare, L. M. (2011). Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. International Journal of Wireless & Mobile Networks, 3(1), 140-149. doi:10.5121/ijwmn.2011.3113 | es_ES |
dc.description.references | Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M.-C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252-265. doi:10.1016/j.compag.2011.02.004 | es_ES |
dc.description.references | Zhu, Y., Song, J., & Dong, F. (2011). Applications of wireless sensor network in the agriculture environment monitoring. Procedia Engineering, 16, 608-614. doi:10.1016/j.proeng.2011.08.1131 | es_ES |
dc.description.references | Keshtgari, M., & Deljoo, A. (2012). A Wireless Sensor Network Solution for Precision Agriculture Based on Zigbee Technology. Wireless Sensor Network, 04(01), 25-30. doi:10.4236/wsn.2012.41004 | es_ES |
dc.description.references | Hwang, J., Shin, C., & Yoe, H. (2010). Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks. Sensors, 10(12), 11189-11211. doi:10.3390/s101211189 | es_ES |
dc.description.references | Garcia-Sanchez, A.-J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288-303. doi:10.1016/j.compag.2010.12.005 | es_ES |
dc.description.references | García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2019). Practical Design of a WSN to Monitor the Crop and its Irrigation System. Network Protocols and Algorithms, 10(4), 35. doi:10.5296/npa.v10i4.14147 | es_ES |
dc.description.references | Popescu, D., Stoican, F., Stamatescu, G., Ichim, L., & Dragana, C. (2020). Advanced UAV–WSN System for Intelligent Monitoring in Precision Agriculture. Sensors, 20(3), 817. doi:10.3390/s20030817 | es_ES |
dc.description.references | Specifications of the WEMOS MINI DI https://docs.wemos.cc/en/latest/d1/d1_mini.html | es_ES |
dc.description.references | Specifications of the Node MCU https://joy-it.net/en/products/SBC-NodeMCU-ESP32 | es_ES |
dc.description.references | Specifications of the Arduino Mega https://store.arduino.cc/arduino-mega-2560-rev3 | es_ES |
dc.description.references | Specifications of the Arduino UNO https://store.arduino.cc/arduino-uno-rev3 | es_ES |
dc.description.references | Specifications of the Raspberry Pi Model B+ https://www.raspberrypi-spy.co.uk/2018/03/introducing-raspberry-pi-3-b-plus-computer/ | es_ES |
dc.description.references | Zorbas, D., Di Puglia Pugliese, L., Razafindralambo, T., & Guerriero, F. (2016). Optimal drone placement and cost-efficient target coverage. Journal of Network and Computer Applications, 75, 16-31. doi:10.1016/j.jnca.2016.08.009 | es_ES |
dc.description.references | Parra, L., Rocher, J., García, L., Lloret, J., Tomás, J., Romero, O., … Roig, B. (2018). Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Network Protocols and Algorithms, 10(2), 95. doi:10.5296/npa.v10i2.13205 | es_ES |