Mostrar el registro sencillo del ítem
dc.contributor.author | Gohil, Dhrumil B. | es_ES |
dc.contributor.author | Pesyridis, Apostolos | es_ES |
dc.contributor.author | Serrano, J.R. | es_ES |
dc.date.accessioned | 2021-05-21T03:32:23Z | |
dc.date.available | 2021-05-21T03:32:23Z | |
dc.date.issued | 2020-05-22 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166598 | |
dc.description.abstract | [EN] This paper presents the evaluation of near-future advanced internal combustion engine technologies to reach near zero-emission in vehicles with in the Indian market. Extensive research was carried out to propose the rationalise the most promising, new ICE technologies which can be implemented in the vehicles to reduce CO2 emissions until the year 2030. A total of six technologies were considered that could be implemented in the Indian market. An initial market survey was carried out on the Indian automotive industry and electric vehicles in India, followed by an in-depth analysis and understanding of each technology through literature review. The main aim of the paper was to construct methods for a successful implementation of clean ICE technologies in the near future and to, also, predict a percentage reduction of CO2 tailpipe emissions from the vehicles. To do this, different objectives were laid out with a view to reducing the tailpipe CO2 emissions. Especially with the recent and legitimate focus on climate change in the world, this study aims to provide practical solutions pathway for India. Widespread research was carried out on all six technologies proposed within the automotive market in India and a set of main graphs represent CO2 emission reduction starting from 2020 until 2030. A significant reduction of CO2 was observed in the graph plot at the end of the paper and the technologies were successfully implemented for the Indian market to curb tailpipe CO2 emissions. A methodology based on calculating the vehicle fuel consumption was implemented and a graph was plotted showing the reduction of CO2 emissions until 2030. The starting point of the graph is 2020, when BS-VI comes into effect in India (April 2020). The CO2 limit taken into consideration here has been defined by the Government at 113 CO2 g/km. The paper fulfilled the aim of predicting the effects of implementing the technologies and the subsequent reductions of CO2 emissions for India. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Thermal propulsion | es_ES |
dc.subject | Internal combustion engine | es_ES |
dc.subject | Carbon capture and storage | es_ES |
dc.subject | Combustion | es_ES |
dc.subject | Boosting | es_ES |
dc.subject | Waste heat recovery | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Overview of Clean Automotive Thermal Propulsion Options for India to 2030 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10103604 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Gohil, DB.; Pesyridis, A.; Serrano, J. (2020). Overview of Clean Automotive Thermal Propulsion Options for India to 2030. Applied Sciences. 10(10):1-29. https://doi.org/10.3390/app10103604 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10103604 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\412886 | es_ES |
dc.description.references | Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001 | es_ES |
dc.description.references | The Guardianhttps://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling | es_ES |
dc.description.references | Technical Regulations, Emission Normshttp://www.siamindia.com/technical-regulation.aspx?mpgid=31&pgidtrail=33 | es_ES |
dc.description.references | Diesel Nethttps://www.dieselnet.com/standards/in/ | es_ES |
dc.description.references | Wissenschaftliche Gesellschaft für Kraftfahrzeug- und Motorentechnik e.Vhttps://www.wkm-ev.de/de/aktuelles.html | es_ES |
dc.description.references | 14 of World’s 15 Most Polluted Cities in Indiahttps://timesofindia.indiatimes.com/city/delhi/14-of-worlds-15-most-polluted-cities-in-india/articleshow/63993356.cms | es_ES |
dc.description.references | CO2 Emissions from Transport (% of Total Fuel Combustion)https://data.worldbank.org/indicator/EN.CO2.TRAN.ZS?end=2014&locations=IN&name_desc=false&start=1971&view=chart | es_ES |
dc.description.references | How India can Drive Towards and Emission Free Futurehttps://www.autocarpro.in/opinion-column/how-india-can-drive-towards-an-emissionfree-future-41288 | es_ES |
dc.description.references | SIAM Welcomes PM Modi’s Assurance on Co-Existence of ICE Vehicles and EVshttps://auto.economictimes.indiatimes.com/news/industry/siam-welcomes-pm-modis-assurance-on-co-existence-of-ice-vehicles-and-evs/70673440 | es_ES |
dc.description.references | Springer Link: Lifetime CO2 Emissions in Different Indian Vehicleshttps://link.springer.com/article/10.1365/s40112-015-1005-7 | es_ES |
dc.description.references | Bernstein, L., Lee, A., & Crookshank, S. (2006). Carbon dioxide capture and storage: a status report. Climate Policy, 6(2), 241-246. doi:10.1080/14693062.2006.9685598 | es_ES |
dc.description.references | International Transport Forumhttps://www.itf-oecd.org/lower-carbon-technologies-road-freight-transport | es_ES |
dc.description.references | IPCC Special Report on Carbon Dioxide Capture and Storagehttps://www.researchgate.net/publication/239877190_IPCC_Special_Report_on_Carbon_dioxide_Capture_and_Storage | es_ES |
dc.description.references | Carbon Capture Storage Technology and Indiahttps://en.reset.org/knowledge/carbon-capture-storage-technology-and-india | es_ES |
dc.description.references | ZEROCO2 Energy & Climate Change—Policy and Progresshttp://www.zeroco2.no/projects/countries/india | es_ES |
dc.description.references | The Third Polehttps://www.thethirdpole.net/en/2018/10/29/india-seeking-ways-to-limit-climate-change-after-ipcc-report/ | es_ES |
dc.description.references | Kapila, R. V., & Stuart Haszeldine, R. (2009). Opportunities in India for Carbon Capture and Storage as a form of climate change mitigation. Energy Procedia, 1(1), 4527-4534. doi:10.1016/j.egypro.2009.02.271 | es_ES |
dc.description.references | Avaritsioti, E. (2016). Environmental and Economic Benefits of Car Exhaust Heat Recovery. Transportation Research Procedia, 14, 1003-1012. doi:10.1016/j.trpro.2016.05.080 | es_ES |
dc.description.references | Dong, G., Morgan, R. E., & Heikal, M. R. (2016). Thermodynamic analysis and system design of a novel split cycle engine concept. Energy, 102, 576-585. doi:10.1016/j.energy.2016.02.102 | es_ES |
dc.description.references | Morgan, R. E., Jackson, N., Atkins, A., dong, G., Heikal, M., & lenartowicz, C. (2017). The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig. SAE International Journal of Engines, 10(5), 2596-2605. doi:10.4271/2017-24-0169 | es_ES |
dc.description.references | Description of a Novel Concentric Rotary Enginehttps://www.sae.org/publications/technical-papers/content/2018-01-0365/ | es_ES |
dc.description.references | Sae Mobilushttps://doi.org/10.4271/2019-01-0325 | es_ES |
dc.description.references | Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2014). A review of the application of variable geometry turbines to the downsized gasoline engine. International Journal of Engine Research, 16(6), 810-825. doi:10.1177/1468087414552289 | es_ES |
dc.description.references | Pachiannan, T., Zhong, W., Rajkumar, S., He, Z., Leng, X., & Wang, Q. (2019). A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy, 251, 113380. doi:10.1016/j.apenergy.2019.113380 | es_ES |
dc.description.references | Ramesh, N., & Mallikarjuna, J. M. (2016). Evaluation of in-cylinder mixture homogeneity in a diesel HCCI engine – A CFD analysis. Engineering Science and Technology, an International Journal, 19(2), 917-925. doi:10.1016/j.jestch.2015.11.013 | es_ES |
dc.description.references | Benajes, J., García-Oliver, J. M., Novella, R., & Kolodziej, C. (2012). Increased particle emissions from early fuel injection timing Diesel low temperature combustion. Fuel, 94, 184-190. doi:10.1016/j.fuel.2011.09.014 | es_ES |
dc.description.references | Rajkumar, S., & Thangaraja, J. (2019). Effect of biodiesel, biodiesel binary blends, hydrogenated biodiesel and injection parameters on NOx and soot emissions in a turbocharged diesel engine. Fuel, 240, 101-118. doi:10.1016/j.fuel.2018.11.141 | es_ES |
dc.description.references | Jin, C., & Zheng, Z. (2015). A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics. Journal of Chemistry, 2015, 1-23. doi:10.1155/2015/910348 | es_ES |
dc.description.references | Dev, S., B Chaudhari, H., Gothekar, S., Juttu, S., Harishchandra Walke, N., & Marathe, N. V. (2017). Review on Advanced Low Temperature Combustion Approach for BS VI. SAE Technical Paper Series. doi:10.4271/2017-26-0042 | es_ES |
dc.description.references | Stanton, D. W. (2013). Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations. SAE International Journal of Engines, 6(3), 1395-1480. doi:10.4271/2013-01-2421 | es_ES |
dc.description.references | Boretti, A., & Al-Zubaidy, S. (2016). E-KERS Energy Management Crucial to Improved Fuel Economy. SAE Technical Paper Series. doi:10.4271/2016-01-1947 | es_ES |
dc.description.references | Metz, L. D. (2013). Potential for Passenger Car Energy Recovery through the Use of Kinetic Energy Recovery Systems (KERS). SAE Technical Paper Series. doi:10.4271/2013-01-0407 | es_ES |
dc.description.references | Kim, J. S., Kim, S. M., Jeong, J. H., Jeong, S. C., & Lee, J. W. (2016). Effect of regenerative braking energy on battery current balance in a parallel hybrid gasoline-electric vehicle under FTP-75 driving mode. International Journal of Automotive Technology, 17(5), 865-872. doi:10.1007/s12239-016-0084-z | es_ES |
dc.description.references | Boretti, A. (2010). Improvements of Vehicle Fuel Economy Using Mechanical Regenerative Braking. SAE Technical Paper Series. doi:10.4271/2010-01-1683 | es_ES |
dc.description.references | Clarke, P., Muneer, T., & Cullinane, K. (2010). Cutting vehicle emissions with regenerative braking. Transportation Research Part D: Transport and Environment, 15(3), 160-167. doi:10.1016/j.trd.2009.11.002 | es_ES |
dc.description.references | Commercial Fleethttps://www.commercialfleet.org/news/truck-news/2015/09/02/kers-system-developed-for-road-freight-trucks | es_ES |
dc.description.references | Aggarwal, P., & Jain, S. (2016). Energy demand and CO2 emissions from urban on-road transport in Delhi: current and future projections under various policy measures. Journal of Cleaner Production, 128, 48-61. doi:10.1016/j.jclepro.2014.12.012 | es_ES |
dc.description.references | Kanikdale, T., & Venugopal, S. (2015). Future Scenarios for Automotive Engines in India. SAE Technical Paper Series. doi:10.4271/2015-26-0034 | es_ES |
dc.description.references | Saidur, R., Rezaei, M., Muzammil, W. K., Hassan, M. H., Paria, S., & Hasanuzzaman, M. (2012). Technologies to recover exhaust heat from internal combustion engines. Renewable and Sustainable Energy Reviews, 16(8), 5649-5659. doi:10.1016/j.rser.2012.05.018 | es_ES |
dc.description.references | Arsie, I., Cricchio, A., Pianese, C., De Cesare, M., & Nesci, W. (2014). A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars. SAE Technical Paper Series. doi:10.4271/2014-01-1650 | es_ES |
dc.description.references | EcoScorehttp://ecoscore.be/en/info/ecoscore/co2 | es_ES |
dc.description.references | CO₂ and Greenhouse Gas Emissionshttps://ourworldindata.org/co2-and-other-greenhouse-gas-emissions | es_ES |