- -

Overview of Clean Automotive Thermal Propulsion Options for India to 2030

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Overview of Clean Automotive Thermal Propulsion Options for India to 2030

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gohil, Dhrumil B. es_ES
dc.contributor.author Pesyridis, Apostolos es_ES
dc.contributor.author Serrano, J.R. es_ES
dc.date.accessioned 2021-05-21T03:32:23Z
dc.date.available 2021-05-21T03:32:23Z
dc.date.issued 2020-05-22 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166598
dc.description.abstract [EN] This paper presents the evaluation of near-future advanced internal combustion engine technologies to reach near zero-emission in vehicles with in the Indian market. Extensive research was carried out to propose the rationalise the most promising, new ICE technologies which can be implemented in the vehicles to reduce CO2 emissions until the year 2030. A total of six technologies were considered that could be implemented in the Indian market. An initial market survey was carried out on the Indian automotive industry and electric vehicles in India, followed by an in-depth analysis and understanding of each technology through literature review. The main aim of the paper was to construct methods for a successful implementation of clean ICE technologies in the near future and to, also, predict a percentage reduction of CO2 tailpipe emissions from the vehicles. To do this, different objectives were laid out with a view to reducing the tailpipe CO2 emissions. Especially with the recent and legitimate focus on climate change in the world, this study aims to provide practical solutions pathway for India. Widespread research was carried out on all six technologies proposed within the automotive market in India and a set of main graphs represent CO2 emission reduction starting from 2020 until 2030. A significant reduction of CO2 was observed in the graph plot at the end of the paper and the technologies were successfully implemented for the Indian market to curb tailpipe CO2 emissions. A methodology based on calculating the vehicle fuel consumption was implemented and a graph was plotted showing the reduction of CO2 emissions until 2030. The starting point of the graph is 2020, when BS-VI comes into effect in India (April 2020). The CO2 limit taken into consideration here has been defined by the Government at 113 CO2 g/km. The paper fulfilled the aim of predicting the effects of implementing the technologies and the subsequent reductions of CO2 emissions for India. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Thermal propulsion es_ES
dc.subject Internal combustion engine es_ES
dc.subject Carbon capture and storage es_ES
dc.subject Combustion es_ES
dc.subject Boosting es_ES
dc.subject Waste heat recovery es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Overview of Clean Automotive Thermal Propulsion Options for India to 2030 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10103604 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Gohil, DB.; Pesyridis, A.; Serrano, J. (2020). Overview of Clean Automotive Thermal Propulsion Options for India to 2030. Applied Sciences. 10(10):1-29. https://doi.org/10.3390/app10103604 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10103604 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\412886 es_ES
dc.description.references Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001 es_ES
dc.description.references The Guardianhttps://www.theguardian.com/sustainable-business/2017/aug/10/electric-cars-big-battery-waste-problem-lithium-recycling es_ES
dc.description.references Technical Regulations, Emission Normshttp://www.siamindia.com/technical-regulation.aspx?mpgid=31&pgidtrail=33 es_ES
dc.description.references Diesel Nethttps://www.dieselnet.com/standards/in/ es_ES
dc.description.references Wissenschaftliche Gesellschaft für Kraftfahrzeug- und Motorentechnik e.Vhttps://www.wkm-ev.de/de/aktuelles.html es_ES
dc.description.references 14 of World’s 15 Most Polluted Cities in Indiahttps://timesofindia.indiatimes.com/city/delhi/14-of-worlds-15-most-polluted-cities-in-india/articleshow/63993356.cms es_ES
dc.description.references CO2 Emissions from Transport (% of Total Fuel Combustion)https://data.worldbank.org/indicator/EN.CO2.TRAN.ZS?end=2014&locations=IN&name_desc=false&start=1971&view=chart es_ES
dc.description.references How India can Drive Towards and Emission Free Futurehttps://www.autocarpro.in/opinion-column/how-india-can-drive-towards-an-emissionfree-future-41288 es_ES
dc.description.references SIAM Welcomes PM Modi’s Assurance on Co-Existence of ICE Vehicles and EVshttps://auto.economictimes.indiatimes.com/news/industry/siam-welcomes-pm-modis-assurance-on-co-existence-of-ice-vehicles-and-evs/70673440 es_ES
dc.description.references Springer Link: Lifetime CO2 Emissions in Different Indian Vehicleshttps://link.springer.com/article/10.1365/s40112-015-1005-7 es_ES
dc.description.references Bernstein, L., Lee, A., & Crookshank, S. (2006). Carbon dioxide capture and storage: a status report. Climate Policy, 6(2), 241-246. doi:10.1080/14693062.2006.9685598 es_ES
dc.description.references International Transport Forumhttps://www.itf-oecd.org/lower-carbon-technologies-road-freight-transport es_ES
dc.description.references IPCC Special Report on Carbon Dioxide Capture and Storagehttps://www.researchgate.net/publication/239877190_IPCC_Special_Report_on_Carbon_dioxide_Capture_and_Storage es_ES
dc.description.references Carbon Capture Storage Technology and Indiahttps://en.reset.org/knowledge/carbon-capture-storage-technology-and-india es_ES
dc.description.references ZEROCO2 Energy & Climate Change—Policy and Progresshttp://www.zeroco2.no/projects/countries/india es_ES
dc.description.references The Third Polehttps://www.thethirdpole.net/en/2018/10/29/india-seeking-ways-to-limit-climate-change-after-ipcc-report/ es_ES
dc.description.references Kapila, R. V., & Stuart Haszeldine, R. (2009). Opportunities in India for Carbon Capture and Storage as a form of climate change mitigation. Energy Procedia, 1(1), 4527-4534. doi:10.1016/j.egypro.2009.02.271 es_ES
dc.description.references Avaritsioti, E. (2016). Environmental and Economic Benefits of Car Exhaust Heat Recovery. Transportation Research Procedia, 14, 1003-1012. doi:10.1016/j.trpro.2016.05.080 es_ES
dc.description.references Dong, G., Morgan, R. E., & Heikal, M. R. (2016). Thermodynamic analysis and system design of a novel split cycle engine concept. Energy, 102, 576-585. doi:10.1016/j.energy.2016.02.102 es_ES
dc.description.references Morgan, R. E., Jackson, N., Atkins, A., dong, G., Heikal, M., & lenartowicz, C. (2017). The Recuperated Split Cycle - Experimental Combustion Data from a Single Cylinder Test Rig. SAE International Journal of Engines, 10(5), 2596-2605. doi:10.4271/2017-24-0169 es_ES
dc.description.references Description of a Novel Concentric Rotary Enginehttps://www.sae.org/publications/technical-papers/content/2018-01-0365/ es_ES
dc.description.references Sae Mobilushttps://doi.org/10.4271/2019-01-0325 es_ES
dc.description.references Tang, H., Pennycott, A., Akehurst, S., & Brace, C. J. (2014). A review of the application of variable geometry turbines to the downsized gasoline engine. International Journal of Engine Research, 16(6), 810-825. doi:10.1177/1468087414552289 es_ES
dc.description.references Pachiannan, T., Zhong, W., Rajkumar, S., He, Z., Leng, X., & Wang, Q. (2019). A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Applied Energy, 251, 113380. doi:10.1016/j.apenergy.2019.113380 es_ES
dc.description.references Ramesh, N., & Mallikarjuna, J. M. (2016). Evaluation of in-cylinder mixture homogeneity in a diesel HCCI engine – A CFD analysis. Engineering Science and Technology, an International Journal, 19(2), 917-925. doi:10.1016/j.jestch.2015.11.013 es_ES
dc.description.references Benajes, J., García-Oliver, J. M., Novella, R., & Kolodziej, C. (2012). Increased particle emissions from early fuel injection timing Diesel low temperature combustion. Fuel, 94, 184-190. doi:10.1016/j.fuel.2011.09.014 es_ES
dc.description.references Rajkumar, S., & Thangaraja, J. (2019). Effect of biodiesel, biodiesel binary blends, hydrogenated biodiesel and injection parameters on NOx and soot emissions in a turbocharged diesel engine. Fuel, 240, 101-118. doi:10.1016/j.fuel.2018.11.141 es_ES
dc.description.references Jin, C., & Zheng, Z. (2015). A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics. Journal of Chemistry, 2015, 1-23. doi:10.1155/2015/910348 es_ES
dc.description.references Dev, S., B Chaudhari, H., Gothekar, S., Juttu, S., Harishchandra Walke, N., & Marathe, N. V. (2017). Review on Advanced Low Temperature Combustion Approach for BS VI. SAE Technical Paper Series. doi:10.4271/2017-26-0042 es_ES
dc.description.references Stanton, D. W. (2013). Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations. SAE International Journal of Engines, 6(3), 1395-1480. doi:10.4271/2013-01-2421 es_ES
dc.description.references Boretti, A., & Al-Zubaidy, S. (2016). E-KERS Energy Management Crucial to Improved Fuel Economy. SAE Technical Paper Series. doi:10.4271/2016-01-1947 es_ES
dc.description.references Metz, L. D. (2013). Potential for Passenger Car Energy Recovery through the Use of Kinetic Energy Recovery Systems (KERS). SAE Technical Paper Series. doi:10.4271/2013-01-0407 es_ES
dc.description.references Kim, J. S., Kim, S. M., Jeong, J. H., Jeong, S. C., & Lee, J. W. (2016). Effect of regenerative braking energy on battery current balance in a parallel hybrid gasoline-electric vehicle under FTP-75 driving mode. International Journal of Automotive Technology, 17(5), 865-872. doi:10.1007/s12239-016-0084-z es_ES
dc.description.references Boretti, A. (2010). Improvements of Vehicle Fuel Economy Using Mechanical Regenerative Braking. SAE Technical Paper Series. doi:10.4271/2010-01-1683 es_ES
dc.description.references Clarke, P., Muneer, T., & Cullinane, K. (2010). Cutting vehicle emissions with regenerative braking. Transportation Research Part D: Transport and Environment, 15(3), 160-167. doi:10.1016/j.trd.2009.11.002 es_ES
dc.description.references Commercial Fleethttps://www.commercialfleet.org/news/truck-news/2015/09/02/kers-system-developed-for-road-freight-trucks es_ES
dc.description.references Aggarwal, P., & Jain, S. (2016). Energy demand and CO2 emissions from urban on-road transport in Delhi: current and future projections under various policy measures. Journal of Cleaner Production, 128, 48-61. doi:10.1016/j.jclepro.2014.12.012 es_ES
dc.description.references Kanikdale, T., & Venugopal, S. (2015). Future Scenarios for Automotive Engines in India. SAE Technical Paper Series. doi:10.4271/2015-26-0034 es_ES
dc.description.references Saidur, R., Rezaei, M., Muzammil, W. K., Hassan, M. H., Paria, S., & Hasanuzzaman, M. (2012). Technologies to recover exhaust heat from internal combustion engines. Renewable and Sustainable Energy Reviews, 16(8), 5649-5659. doi:10.1016/j.rser.2012.05.018 es_ES
dc.description.references Arsie, I., Cricchio, A., Pianese, C., De Cesare, M., & Nesci, W. (2014). A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars. SAE Technical Paper Series. doi:10.4271/2014-01-1650 es_ES
dc.description.references EcoScorehttp://ecoscore.be/en/info/ecoscore/co2 es_ES
dc.description.references CO₂ and Greenhouse Gas Emissionshttps://ourworldindata.org/co2-and-other-greenhouse-gas-emissions es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem