- -

Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels

Mostrar el registro completo del ítem

Bastida-Molina, P.; Hurtado-Perez, E.; Peñalvo-López, E.; Moros-Gómez, MC. (2020). Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels. Transportation Research Part D Transport and Environment. 88:1-23. https://doi.org/10.1016/j.trd.2020.102560

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166599

Ficheros en el ítem

Metadatos del ítem

Título: Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels
Autor: Bastida-Molina, Paula Hurtado-Perez, Elias Peñalvo-López, Elisa Moros-Gómez, María Cristina
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Electric Vehicles (EVs) appear as an environmental solution for transport sector since they emit zero emissions while driving. Nonetheless, the carbon intensity (CI) of the energy sources involved in the electricity ...[+]
Palabras clave: Electric vehicle , CO2 emissions , Electricity system , Renewable sources , Well-to-wheel
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Transportation Research Part D Transport and Environment. (issn: 1361-9209 )
DOI: 10.1016/j.trd.2020.102560
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.trd.2020.102560
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F106/
Agradecimientos:
This work was supported in part by the regional public administration of Valencia under the grant ACIF/2018/106.
Tipo: Artículo

References

Acuerdo de París | Acción por el Clima n.d. https://ec.europa.eu/clima/policies/international/negotiations/paris_es (accessed July 7, 2020).

Álvarez Fernández, R. (2018). A more realistic approach to electric vehicle contribution to greenhouse gas emissions in the city. Journal of Cleaner Production, 172, 949-959. doi:10.1016/j.jclepro.2017.10.158

ANESDOR. Two wheels vehicles sector in Spain 2019. https://www.anesdor.com/wp-content/uploads/2019/02/190121_PPT_RP_Madrid.pdf (accessed January 28, 2020). [+]
Acuerdo de París | Acción por el Clima n.d. https://ec.europa.eu/clima/policies/international/negotiations/paris_es (accessed July 7, 2020).

Álvarez Fernández, R. (2018). A more realistic approach to electric vehicle contribution to greenhouse gas emissions in the city. Journal of Cleaner Production, 172, 949-959. doi:10.1016/j.jclepro.2017.10.158

ANESDOR. Two wheels vehicles sector in Spain 2019. https://www.anesdor.com/wp-content/uploads/2019/02/190121_PPT_RP_Madrid.pdf (accessed January 28, 2020).

ANFAC | Annual Report 2018. ANFAC n.d. https://anfac.com/categorias_publicaciones/informe-anual/ (accessed December 5, 2019).

Athanasopoulou, L., Bikas, H., Stavropoulos, P., 2018. Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP, vol. 78, Elsevier B.V.; 2018, p. 25–30. 10.1016/j.procir.2018.08.169.

Bastida-Molina, P., Alfonso-Solar, D., Vargas-Salgado, C., Montuori, L., 2019. Assessing the increase of solar fields in the Iberian Peninsula, 2019. 10.4995/CARPE2019.2019.10205.

BOE-A-2019-16856 2019. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-16856 (accessed December 12, 2019).

Burchart-Korol, D., Jursova, S., Folęga, P., & Pustejovska, P. (2020). Life cycle impact assessment of electric vehicle battery charging in European Union countries. Journal of Cleaner Production, 257, 120476. doi:10.1016/j.jclepro.2020.120476

Canals Casals, L., Martinez-Laserna, E., Amante García, B., & Nieto, N. (2016). Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. Journal of Cleaner Production, 127, 425-437. doi:10.1016/j.jclepro.2016.03.120

Choi, H., Shin, J., & Woo, J. (2018). Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. Energy Policy, 121, 13-24. doi:10.1016/j.enpol.2018.06.013

Choi, W., & Song, H. H. (2018). Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study. Applied Energy, 230, 135-147. doi:10.1016/j.apenergy.2018.08.092

Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481

Dai, Q., Cai, T., Duan, S., & Zhao, F. (2014). Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station. IEEE Transactions on Power Delivery, 29(4), 1909-1917. doi:10.1109/tpwrd.2014.2308990

DGT. Vehicle fleet historical data base 2017. http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ (accessed January 2, 2019).

Dong, X., Wang, B., Yip, H. L., & Chan, Q. N. (2019). CO2 Emission of Electric and Gasoline Vehicles under Various Road Conditions for China, Japan, Europe and World Average—Prediction through Year 2040. Applied Sciences, 9(11), 2295. doi:10.3390/app9112295

Driscoll, Á., Lyons, S., Mariuzzo, F., & Tol, R. S. J. (2013). Simulating demand for electric vehicles using revealed preference data. Energy Policy, 62, 686-696. doi:10.1016/j.enpol.2013.07.061

Edwards, R. (Jrc/Ies), Larive, J.-F., (Concawe), Mahieu, V. (Jrc/Ies), Rounveirolles, P. (Renault)., 2007. Well-to-Wheels analysis of future automotive fuels and well-to-wheels Report. Europe 2007;Version 2c:88. 10.2788/79018.

Ehrenberger, S. I., Dunn, J. B., Jungmeier, G., & Wang, H. (2019). An international dialogue about electric vehicle deployment to bring energy and greenhouse gas benefits through 2030 on a well-to-wheels basis. Transportation Research Part D: Transport and Environment, 74, 245-254. doi:10.1016/j.trd.2019.07.027

Evaluación del potencial de energía de la biomasa 2019. https://www.idae.es/uploads/documentos/documentos_11227_e14_biomasa_A_8d51bf1c.pdf (accessed July 8, 2020).

Gallet, M., Massier, T., & Hamacher, T. (2018). Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks. Applied Energy, 230, 344-356. doi:10.1016/j.apenergy.2018.08.086

Hass H, Huss A, Maas H. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context: Tank-to-Wheels Appendix 1 - Version 4.a. 2014. 10.2790/95839.

He, Y., Song, Z., & Liu, Z. (2019). Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities and Society, 48, 101530. doi:10.1016/j.scs.2019.101530

Hidroeléctrica n.d. https://www.acciona-energia.com/es/areas-de-actividad/otras-tecnologias/hidroelectrica/ (accessed July 8, 2020).

Hoekstra, A. (2019). The Underestimated Potential of Battery Electric Vehicles to Reduce Emissions. Joule, 3(6), 1412-1414. doi:10.1016/j.joule.2019.06.002

Hu, X., Murgovski, N., Johannesson, L., & Egardt, B. (2013). Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes. Applied Energy, 111, 1001-1009. doi:10.1016/j.apenergy.2013.06.056

Huo, H., Cai, H., Zhang, Q., Liu, F., & He, K. (2015). Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S. Atmospheric Environment, 108, 107-116. doi:10.1016/j.atmosenv.2015.02.073

IDAE. Fuel management guide for road transport fleets 2006. https://www.idae.es/uploads/documentos/documentos_10232_Guia_gestion_combustible_flotas_carretera_06_32bad0b7.pdf (accessed November 14, 2019).

INE. Average distance covered by vehicles fleet 2018. http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (accessed December 30, 2018).

Ingeborgrud, L., & Ryghaug, M. (2019). The role of practical, cognitive and symbolic factors in the successful implementation of battery electric vehicles in Norway. Transportation Research Part A: Policy and Practice, 130, 507-516. doi:10.1016/j.tra.2019.09.045

International Energy Agency. Data and statistics 2016. https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2016 (accessed December 12, 2019).

Jochem, P., Babrowski, S., & Fichtner, W. (2015). Assessing CO 2 emissions of electric vehicles in Germany in 2030. Transportation Research Part A: Policy and Practice, 78, 68-83. doi:10.1016/j.tra.2015.05.007

Ke, W., Zhang, S., He, X., Wu, Y., & Hao, J. (2017). Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Applied Energy, 188, 367-377. doi:10.1016/j.apenergy.2016.12.011

Kobashi, T., Yoshida, T., Yamagata, Y., Naito, K., Pfenninger, S., Say, K., … Hara, K. (2020). On the potential of «Photovoltaics + Electric vehicles» for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations. Applied Energy, 275, 115419. doi:10.1016/j.apenergy.2020.115419

Limmer, S., & Rodemann, T. (2019). Peak load reduction through dynamic pricing for electric vehicle charging. International Journal of Electrical Power & Energy Systems, 113, 117-128. doi:10.1016/j.ijepes.2019.05.031

Liu, Z., Wu, Q., Nielsen, A., & Wang, Y. (2014). Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050. Energies, 7(3), 1733-1749. doi:10.3390/en7031733

Liu, F., Zhao, F., Liu, Z., & Hao, H. (2018). China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts. Energies, 11(12), 3353. doi:10.3390/en11123353

Manjunath, A., & Gross, G. (2017). Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs). Energy Policy, 102, 423-429. doi:10.1016/j.enpol.2016.12.003

Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on a full transit network: Operational feasibility and grid impact analysis. Electric Power Systems Research, 142, 163-175. doi:10.1016/j.epsr.2016.09.032

Moro, A., & Helmers, E. (2015). A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles. The International Journal of Life Cycle Assessment, 22(1), 4-14. doi:10.1007/s11367-015-0954-z

Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14. doi:10.1016/j.trd.2017.07.012

Morrissey, P., Weldon, P., & O’Mahony, M. (2016). Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour. Energy Policy, 89, 257-270. doi:10.1016/j.enpol.2015.12.001

Mutter. (2019). Obduracy and Change in Urban Transport—Understanding Competition Between Sustainable Fuels in Swedish Municipalities. Sustainability, 11(21), 6092. doi:10.3390/su11216092

National Integrated Plan about Energy and Climate 2021-2030 | IDAE 2019. https://www.idae.es/informacion-y-publicaciones/plan-nacional-integrado-de-energia-y-clima-pniec-2021-2030 (accessed December 13, 2019).

Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. 2009.

Onn, C. C., Mohd, N. S., Yuen, C. W., Loo, S. C., Koting, S., Abd Rashid, A. F., … Yusoff, S. (2018). Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D: Transport and Environment, 64, 15-22. doi:10.1016/j.trd.2017.06.018

OPPCharge Common Interface for Automated Charging of Hybrid Electric and Electric Commercial Vehicles 2 nd Edition. 2019.

Plan MOVES 2020: ayudas para coches eléctricos y puntos de recarga n.d. https://etecnic.es/noticias/sector/ayudas-subvenciones/plan-moves-2020/ (accessed July 7, 2020).

PNIEC. Spanish climate change draft law 2019. https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 (accessed April 12, 2019).

Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080

REE. Electric mobility guide for local entities 2018. https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (accessed July 31, 2019).

Régimen de comercio de derechos de emisión de la UE (RCDE UE) | Acción por el Clima n.d. https://ec.europa.eu/clima/policies/ets_es (accessed July 7, 2020).

REGLAMENTO (UE) 2019/631 DEL PARLAMENTO EUROPEO n.d. https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX:32019R0631 (accessed July 9, 2020).

Sarker, M. R., Pandzic, H., & Ortega-Vazquez, M. A. (2015). Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station. IEEE Transactions on Power Systems, 30(2), 901-910. doi:10.1109/tpwrs.2014.2331560

Scarinci, R., Zanarini, A., & Bierlaire, M. (2019). Electrification of urban mobility: The case of catenary-free buses. Transport Policy, 80, 39-48. doi:10.1016/j.tranpol.2019.05.006

Shafiee, S., Fotuhi-Firuzabad, M., & Rastegar, M. (2013). Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Transactions on Smart Grid, 4(3), 1351-1360. doi:10.1109/tsg.2013.2251483

Shamshirband, M., Salehi, J., & Gazijahani, F. S. (2018). Decentralized trading of plug-in electric vehicle aggregation agents for optimal energy management of smart renewable penetrated microgrids with the aim of CO2 emission reduction. Journal of Cleaner Production, 200, 622-640. doi:10.1016/j.jclepro.2018.07.315

Shen, W., Han, W., & Wallington, T. J. (2014). Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles. Environmental Science & Technology, 48(12), 7069-7075. doi:10.1021/es500524e

Shen, W., Han, W., Wallington, T. J., & Winkler, S. L. (2019). China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Environmental Science & Technology, 53(10), 6063-6072. doi:10.1021/acs.est.8b05264

Spangher, L., Gorman, W., Bauer, G., Xu, Y., Atkinson, C., 2019. Quantifying the impact of U.S. electric vehicle sales on light-duty vehicle fleet CO2 emissions using a novel agent-based simulation. Transp Res Part D Transp Environ 2019;72:358–77. 10.1016/j.trd.2019.05.004.

IDAE. Spanish Goverment. UE. Hybrid electric buses introduction in the Transport Fleet Company S.A.M 2019. https://www.idae.es/uploads/documentos/documentos_detalle_proyecto_Autobuses_Malaga_c260fac8.pdf (accessed December 5, 2019).

Spanish Nuclear Industry Forum 2019. https://www.foronuclear.org/es/ (accessed March 7, 2020).

Su, J., Lie, T. T., & Zamora, R. (2019). Modelling of large-scale electric vehicles charging demand: A New Zealand case study. Electric Power Systems Research, 167, 171-182. doi:10.1016/j.epsr.2018.10.030

Teixeira, A. C. R., & Sodré, J. R. (2018). Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO 2 emissions. Transportation Research Part D: Transport and Environment, 59, 375-384. doi:10.1016/j.trd.2018.01.004

Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565. doi:10.1016/j.rser.2013.08.013

2010/75/UE n.d. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32010L0075&from=ES (accessed July 7, 2020).

Units and conversion factors. Renew. Energy, Elsevier; 2017, p. xxvii–xxix. 10.1016/b978-0-12-804567-1.00017-7.

Urban and metropolitan transport in Spain. Spanish Minist Dev 2016. https://www.fomento.gob.es/recursos_mfom/00transporteurbano.pdf (accessed December 16, 2019).

van den Broek M, Faaij A, Turkenburg W. Planning for an electricity sector with carbon capture and storage. Case of the Netherlands. Int. J. Greenh. Gas Control 2008;2:105–29. 10.1016/S1750-5836(07)00113-2.

Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research Part D: Transport and Environment, 41, 348-366. doi:10.1016/j.trd.2015.09.007

Woo, J., Choi, H., & Ahn, J. (2017). Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment, 51, 340-350. doi:10.1016/j.trd.2017.01.005

Wu, Z., Guo, F., Polak, J., & Strbac, G. (2019). Evaluating grid-interactive electric bus operation and demand response with load management tariff. Applied Energy, 255, 113798. doi:10.1016/j.apenergy.2019.113798

Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550. doi:10.1016/j.enpol.2012.05.060

Wu, Y., & Zhang, L. (2017). Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D: Transport and Environment, 51, 129-145. doi:10.1016/j.trd.2016.12.007

Yang, Y., El Baghdadi, M., Lan, Y., Benomar, Y., Van Mierlo, J., & Hegazy, O. (2018). Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles. Energies, 11(7), 1716. doi:10.3390/en11071716

Zhang, X. (2018). Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm. Energies, 11(6), 1449. doi:10.3390/en11061449

Zheng, J., Sun, X., Jia, L., & Zhou, Y. (2020). Electric passenger vehicles sales and carbon dioxide emission reduction potential in China’s leading markets. Journal of Cleaner Production, 243, 118607. doi:10.1016/j.jclepro.2019.118607

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem