- -

Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bastida-Molina, Paula es_ES
dc.contributor.author Hurtado-Perez, Elias es_ES
dc.contributor.author Peñalvo-López, Elisa es_ES
dc.contributor.author Moros-Gómez, María Cristina es_ES
dc.date.accessioned 2021-05-21T03:32:24Z
dc.date.available 2021-05-21T03:32:24Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 1361-9209 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166599
dc.description.abstract [EN] Electric Vehicles (EVs) appear as an environmental solution for transport sector since they emit zero emissions while driving. Nonetheless, the carbon intensity (CI) of the energy sources involved in the electricity generation system could seriously compromise this solution. Hence, this study proposes a methodology to verify the sustainability of the sector by the introduction of EVs. By means of the "Well-to-Wheel" tool, it compares emissions generated by two fleets: one based on internal combustion engine vehicles (ICEVs) and another one that also contemplates different EVs penetration levels. This methodology develops an iterative process on the contribution of renewable sources to the electricity generation system until a certain level of emissions reduction is achieved. The needed evolution of the CI for the electricity system is therefore deduced. The methodology has been applied to Spain by the mid-term future, given these country policies for both a high penetration of EVs and a progressive introduction of renewable sources in its electricity system. Results indicate that the current Spanish electricity mix allows for a reduction in CO2 emissions by the introduction of EVs, but a 100% renewable system will be needed for reductions up to 74 million tons per year. This research is a first-ever study to relate the forecasted Spanish environmental policies, in terms of urban transport and configuration of the power system, with a sustainable introduction of EVs in the urban fleet. Hence, this paper would be very helpful for policy makers on evaluation of the requirements for a transport fleet electrification. es_ES
dc.description.sponsorship This work was supported in part by the regional public administration of Valencia under the grant ACIF/2018/106. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Transportation Research Part D Transport and Environment es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Electric vehicle es_ES
dc.subject CO2 emissions es_ES
dc.subject Electricity system es_ES
dc.subject Renewable sources es_ES
dc.subject Well-to-wheel es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.trd.2020.102560 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F106/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Bastida-Molina, P.; Hurtado-Perez, E.; Peñalvo-López, E.; Moros-Gómez, MC. (2020). Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels. Transportation Research Part D Transport and Environment. 88:1-23. https://doi.org/10.1016/j.trd.2020.102560 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.trd.2020.102560 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.relation.pasarela S\419941 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Acuerdo de París | Acción por el Clima n.d. https://ec.europa.eu/clima/policies/international/negotiations/paris_es (accessed July 7, 2020). es_ES
dc.description.references Álvarez Fernández, R. (2018). A more realistic approach to electric vehicle contribution to greenhouse gas emissions in the city. Journal of Cleaner Production, 172, 949-959. doi:10.1016/j.jclepro.2017.10.158 es_ES
dc.description.references ANESDOR. Two wheels vehicles sector in Spain 2019. https://www.anesdor.com/wp-content/uploads/2019/02/190121_PPT_RP_Madrid.pdf (accessed January 28, 2020). es_ES
dc.description.references ANFAC | Annual Report 2018. ANFAC n.d. https://anfac.com/categorias_publicaciones/informe-anual/ (accessed December 5, 2019). es_ES
dc.description.references Athanasopoulou, L., Bikas, H., Stavropoulos, P., 2018. Comparative Well-to-Wheel Emissions Assessment of Internal Combustion Engine and Battery Electric Vehicles. Procedia CIRP, vol. 78, Elsevier B.V.; 2018, p. 25–30. 10.1016/j.procir.2018.08.169. es_ES
dc.description.references Bastida-Molina, P., Alfonso-Solar, D., Vargas-Salgado, C., Montuori, L., 2019. Assessing the increase of solar fields in the Iberian Peninsula, 2019. 10.4995/CARPE2019.2019.10205. es_ES
dc.description.references BOE-A-2019-16856 2019. https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-16856 (accessed December 12, 2019). es_ES
dc.description.references Burchart-Korol, D., Jursova, S., Folęga, P., & Pustejovska, P. (2020). Life cycle impact assessment of electric vehicle battery charging in European Union countries. Journal of Cleaner Production, 257, 120476. doi:10.1016/j.jclepro.2020.120476 es_ES
dc.description.references Canals Casals, L., Martinez-Laserna, E., Amante García, B., & Nieto, N. (2016). Sustainability analysis of the electric vehicle use in Europe for CO2 emissions reduction. Journal of Cleaner Production, 127, 425-437. doi:10.1016/j.jclepro.2016.03.120 es_ES
dc.description.references Choi, H., Shin, J., & Woo, J. (2018). Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. Energy Policy, 121, 13-24. doi:10.1016/j.enpol.2018.06.013 es_ES
dc.description.references Choi, W., & Song, H. H. (2018). Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study. Applied Energy, 230, 135-147. doi:10.1016/j.apenergy.2018.08.092 es_ES
dc.description.references Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481 es_ES
dc.description.references Dai, Q., Cai, T., Duan, S., & Zhao, F. (2014). Stochastic Modeling and Forecasting of Load Demand for Electric Bus Battery-Swap Station. IEEE Transactions on Power Delivery, 29(4), 1909-1917. doi:10.1109/tpwrd.2014.2308990 es_ES
dc.description.references DGT. Vehicle fleet historical data base 2017. http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/series-historicas/ (accessed January 2, 2019). es_ES
dc.description.references Dong, X., Wang, B., Yip, H. L., & Chan, Q. N. (2019). CO2 Emission of Electric and Gasoline Vehicles under Various Road Conditions for China, Japan, Europe and World Average—Prediction through Year 2040. Applied Sciences, 9(11), 2295. doi:10.3390/app9112295 es_ES
dc.description.references Driscoll, Á., Lyons, S., Mariuzzo, F., & Tol, R. S. J. (2013). Simulating demand for electric vehicles using revealed preference data. Energy Policy, 62, 686-696. doi:10.1016/j.enpol.2013.07.061 es_ES
dc.description.references Edwards, R. (Jrc/Ies), Larive, J.-F., (Concawe), Mahieu, V. (Jrc/Ies), Rounveirolles, P. (Renault)., 2007. Well-to-Wheels analysis of future automotive fuels and well-to-wheels Report. Europe 2007;Version 2c:88. 10.2788/79018. es_ES
dc.description.references Ehrenberger, S. I., Dunn, J. B., Jungmeier, G., & Wang, H. (2019). An international dialogue about electric vehicle deployment to bring energy and greenhouse gas benefits through 2030 on a well-to-wheels basis. Transportation Research Part D: Transport and Environment, 74, 245-254. doi:10.1016/j.trd.2019.07.027 es_ES
dc.description.references Evaluación del potencial de energía de la biomasa 2019. https://www.idae.es/uploads/documentos/documentos_11227_e14_biomasa_A_8d51bf1c.pdf (accessed July 8, 2020). es_ES
dc.description.references Gallet, M., Massier, T., & Hamacher, T. (2018). Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks. Applied Energy, 230, 344-356. doi:10.1016/j.apenergy.2018.08.086 es_ES
dc.description.references Hass H, Huss A, Maas H. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context: Tank-to-Wheels Appendix 1 - Version 4.a. 2014. 10.2790/95839. es_ES
dc.description.references He, Y., Song, Z., & Liu, Z. (2019). Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities and Society, 48, 101530. doi:10.1016/j.scs.2019.101530 es_ES
dc.description.references Hidroeléctrica n.d. https://www.acciona-energia.com/es/areas-de-actividad/otras-tecnologias/hidroelectrica/ (accessed July 8, 2020). es_ES
dc.description.references Hoekstra, A. (2019). The Underestimated Potential of Battery Electric Vehicles to Reduce Emissions. Joule, 3(6), 1412-1414. doi:10.1016/j.joule.2019.06.002 es_ES
dc.description.references Hu, X., Murgovski, N., Johannesson, L., & Egardt, B. (2013). Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes. Applied Energy, 111, 1001-1009. doi:10.1016/j.apenergy.2013.06.056 es_ES
dc.description.references Huo, H., Cai, H., Zhang, Q., Liu, F., & He, K. (2015). Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S. Atmospheric Environment, 108, 107-116. doi:10.1016/j.atmosenv.2015.02.073 es_ES
dc.description.references IDAE. Fuel management guide for road transport fleets 2006. https://www.idae.es/uploads/documentos/documentos_10232_Guia_gestion_combustible_flotas_carretera_06_32bad0b7.pdf (accessed November 14, 2019). es_ES
dc.description.references INE. Average distance covered by vehicles fleet 2018. http://www.ine.es/jaxi/Tabla.htm?path=/t25/p500/2008/p10/l0/&file=10020.px&L=0 (accessed December 30, 2018). es_ES
dc.description.references Ingeborgrud, L., & Ryghaug, M. (2019). The role of practical, cognitive and symbolic factors in the successful implementation of battery electric vehicles in Norway. Transportation Research Part A: Policy and Practice, 130, 507-516. doi:10.1016/j.tra.2019.09.045 es_ES
dc.description.references International Energy Agency. Data and statistics 2016. https://www.iea.org/data-and-statistics/data-tables?country=WORLD&energy=Balances&year=2016 (accessed December 12, 2019). es_ES
dc.description.references Jochem, P., Babrowski, S., & Fichtner, W. (2015). Assessing CO 2 emissions of electric vehicles in Germany in 2030. Transportation Research Part A: Policy and Practice, 78, 68-83. doi:10.1016/j.tra.2015.05.007 es_ES
dc.description.references Ke, W., Zhang, S., He, X., Wu, Y., & Hao, J. (2017). Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Applied Energy, 188, 367-377. doi:10.1016/j.apenergy.2016.12.011 es_ES
dc.description.references Kobashi, T., Yoshida, T., Yamagata, Y., Naito, K., Pfenninger, S., Say, K., … Hara, K. (2020). On the potential of «Photovoltaics + Electric vehicles» for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations. Applied Energy, 275, 115419. doi:10.1016/j.apenergy.2020.115419 es_ES
dc.description.references Limmer, S., & Rodemann, T. (2019). Peak load reduction through dynamic pricing for electric vehicle charging. International Journal of Electrical Power & Energy Systems, 113, 117-128. doi:10.1016/j.ijepes.2019.05.031 es_ES
dc.description.references Liu, Z., Wu, Q., Nielsen, A., & Wang, Y. (2014). Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050. Energies, 7(3), 1733-1749. doi:10.3390/en7031733 es_ES
dc.description.references Liu, F., Zhao, F., Liu, Z., & Hao, H. (2018). China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts. Energies, 11(12), 3353. doi:10.3390/en11123353 es_ES
dc.description.references Manjunath, A., & Gross, G. (2017). Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs). Energy Policy, 102, 423-429. doi:10.1016/j.enpol.2016.12.003 es_ES
dc.description.references Mohamed, M., Farag, H., El-Taweel, N., & Ferguson, M. (2017). Simulation of electric buses on a full transit network: Operational feasibility and grid impact analysis. Electric Power Systems Research, 142, 163-175. doi:10.1016/j.epsr.2016.09.032 es_ES
dc.description.references Moro, A., & Helmers, E. (2015). A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles. The International Journal of Life Cycle Assessment, 22(1), 4-14. doi:10.1007/s11367-015-0954-z es_ES
dc.description.references Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14. doi:10.1016/j.trd.2017.07.012 es_ES
dc.description.references Morrissey, P., Weldon, P., & O’Mahony, M. (2016). Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour. Energy Policy, 89, 257-270. doi:10.1016/j.enpol.2015.12.001 es_ES
dc.description.references Mutter. (2019). Obduracy and Change in Urban Transport—Understanding Competition Between Sustainable Fuels in Swedish Municipalities. Sustainability, 11(21), 6092. doi:10.3390/su11216092 es_ES
dc.description.references National Integrated Plan about Energy and Climate 2021-2030 | IDAE 2019. https://www.idae.es/informacion-y-publicaciones/plan-nacional-integrado-de-energia-y-clima-pniec-2021-2030 (accessed December 13, 2019). es_ES
dc.description.references Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. 2009. es_ES
dc.description.references Onn, C. C., Mohd, N. S., Yuen, C. W., Loo, S. C., Koting, S., Abd Rashid, A. F., … Yusoff, S. (2018). Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D: Transport and Environment, 64, 15-22. doi:10.1016/j.trd.2017.06.018 es_ES
dc.description.references OPPCharge Common Interface for Automated Charging of Hybrid Electric and Electric Commercial Vehicles 2 nd Edition. 2019. es_ES
dc.description.references Plan MOVES 2020: ayudas para coches eléctricos y puntos de recarga n.d. https://etecnic.es/noticias/sector/ayudas-subvenciones/plan-moves-2020/ (accessed July 7, 2020). es_ES
dc.description.references PNIEC. Spanish climate change draft law 2019. https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-consejo-de-ministros-da-luz-verde-al-anteproyecto-de-ley-de-cambio-climático-/tcm:30-487294 (accessed April 12, 2019). es_ES
dc.description.references Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. doi:10.1016/j.energy.2019.04.080 es_ES
dc.description.references REE. Electric mobility guide for local entities 2018. https://www.ree.es/sites/default/files/downloadable/Guia_movilidad_electrica_para_entidades_locales.pdf (accessed July 31, 2019). es_ES
dc.description.references Régimen de comercio de derechos de emisión de la UE (RCDE UE) | Acción por el Clima n.d. https://ec.europa.eu/clima/policies/ets_es (accessed July 7, 2020). es_ES
dc.description.references REGLAMENTO (UE) 2019/631 DEL PARLAMENTO EUROPEO n.d. https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX:32019R0631 (accessed July 9, 2020). es_ES
dc.description.references Sarker, M. R., Pandzic, H., & Ortega-Vazquez, M. A. (2015). Optimal Operation and Services Scheduling for an Electric Vehicle Battery Swapping Station. IEEE Transactions on Power Systems, 30(2), 901-910. doi:10.1109/tpwrs.2014.2331560 es_ES
dc.description.references Scarinci, R., Zanarini, A., & Bierlaire, M. (2019). Electrification of urban mobility: The case of catenary-free buses. Transport Policy, 80, 39-48. doi:10.1016/j.tranpol.2019.05.006 es_ES
dc.description.references Shafiee, S., Fotuhi-Firuzabad, M., & Rastegar, M. (2013). Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Transactions on Smart Grid, 4(3), 1351-1360. doi:10.1109/tsg.2013.2251483 es_ES
dc.description.references Shamshirband, M., Salehi, J., & Gazijahani, F. S. (2018). Decentralized trading of plug-in electric vehicle aggregation agents for optimal energy management of smart renewable penetrated microgrids with the aim of CO2 emission reduction. Journal of Cleaner Production, 200, 622-640. doi:10.1016/j.jclepro.2018.07.315 es_ES
dc.description.references Shen, W., Han, W., & Wallington, T. J. (2014). Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles. Environmental Science & Technology, 48(12), 7069-7075. doi:10.1021/es500524e es_ES
dc.description.references Shen, W., Han, W., Wallington, T. J., & Winkler, S. L. (2019). China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Environmental Science & Technology, 53(10), 6063-6072. doi:10.1021/acs.est.8b05264 es_ES
dc.description.references Spangher, L., Gorman, W., Bauer, G., Xu, Y., Atkinson, C., 2019. Quantifying the impact of U.S. electric vehicle sales on light-duty vehicle fleet CO2 emissions using a novel agent-based simulation. Transp Res Part D Transp Environ 2019;72:358–77. 10.1016/j.trd.2019.05.004. es_ES
dc.description.references IDAE. Spanish Goverment. UE. Hybrid electric buses introduction in the Transport Fleet Company S.A.M 2019. https://www.idae.es/uploads/documentos/documentos_detalle_proyecto_Autobuses_Malaga_c260fac8.pdf (accessed December 5, 2019). es_ES
dc.description.references Spanish Nuclear Industry Forum 2019. https://www.foronuclear.org/es/ (accessed March 7, 2020). es_ES
dc.description.references Su, J., Lie, T. T., & Zamora, R. (2019). Modelling of large-scale electric vehicles charging demand: A New Zealand case study. Electric Power Systems Research, 167, 171-182. doi:10.1016/j.epsr.2018.10.030 es_ES
dc.description.references Teixeira, A. C. R., & Sodré, J. R. (2018). Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO 2 emissions. Transportation Research Part D: Transport and Environment, 59, 375-384. doi:10.1016/j.trd.2018.01.004 es_ES
dc.description.references Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 28, 555-565. doi:10.1016/j.rser.2013.08.013 es_ES
dc.description.references 2010/75/UE n.d. https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32010L0075&from=ES (accessed July 7, 2020). es_ES
dc.description.references Units and conversion factors. Renew. Energy, Elsevier; 2017, p. xxvii–xxix. 10.1016/b978-0-12-804567-1.00017-7. es_ES
dc.description.references Urban and metropolitan transport in Spain. Spanish Minist Dev 2016. https://www.fomento.gob.es/recursos_mfom/00transporteurbano.pdf (accessed December 16, 2019). es_ES
dc.description.references van den Broek M, Faaij A, Turkenburg W. Planning for an electricity sector with carbon capture and storage. Case of the Netherlands. Int. J. Greenh. Gas Control 2008;2:105–29. 10.1016/S1750-5836(07)00113-2. es_ES
dc.description.references Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research Part D: Transport and Environment, 41, 348-366. doi:10.1016/j.trd.2015.09.007 es_ES
dc.description.references Woo, J., Choi, H., & Ahn, J. (2017). Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment, 51, 340-350. doi:10.1016/j.trd.2017.01.005 es_ES
dc.description.references Wu, Z., Guo, F., Polak, J., & Strbac, G. (2019). Evaluating grid-interactive electric bus operation and demand response with load management tariff. Applied Energy, 255, 113798. doi:10.1016/j.apenergy.2019.113798 es_ES
dc.description.references Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550. doi:10.1016/j.enpol.2012.05.060 es_ES
dc.description.references Wu, Y., & Zhang, L. (2017). Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transportation Research Part D: Transport and Environment, 51, 129-145. doi:10.1016/j.trd.2016.12.007 es_ES
dc.description.references Yang, Y., El Baghdadi, M., Lan, Y., Benomar, Y., Van Mierlo, J., & Hegazy, O. (2018). Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles. Energies, 11(7), 1716. doi:10.3390/en11071716 es_ES
dc.description.references Zhang, X. (2018). Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm. Energies, 11(6), 1449. doi:10.3390/en11061449 es_ES
dc.description.references Zheng, J., Sun, X., Jia, L., & Zhou, Y. (2020). Electric passenger vehicles sales and carbon dioxide emission reduction potential in China’s leading markets. Journal of Cleaner Production, 243, 118607. doi:10.1016/j.jclepro.2019.118607 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem