- -

Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing

Mostrar el registro completo del ítem

Griol-Barres, I.; Milla, S.; Cebrián Ferriols, AJ.; Fan, H.; Millet Roig, J. (2020). Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing. Sustainability. 12(19):1-21. https://doi.org/10.3390/su12197848

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166654

Ficheros en el ítem

Metadatos del ítem

Título: Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing
Autor: Griol-Barres, Israel Milla, Sergio Cebrián Ferriols, Antonio José Fan, Huaan Millet Roig, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Organizations, companies and start-ups need to cope with constant changes on the market which are difficult to predict. Therefore, the development of new systems to detect significant future changes is vital to make ...[+]
Palabras clave: New sustainable business models , Business intelligence , Natural language processing , Weak signals of the future , Predictive models , Text mining
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su12197848
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su12197848
Código del Proyecto:
info:eu-repo/grantAgreement/EC/Erasmus+/573965-EPP-1-2016-1-SE-EPPKA2-CBHE-JP/EU/Enhancing innovation competences and entrepreneurial skills in engineering education/InnoCENS/
info:eu-repo/grantAgreement/EIT Climate-KIC//TC_3.1.5_190607_P066-1A/
Agradecimientos:
This research is partially supported by EIT Climate-KIC of the European Institute of Technology (project EIT Climate-KIC Accelerator-TC_3.1.5_190607_P066-1A) and InnoCENS from Erasmus + (573965-EPP-1-2016-1-SE-EPPKA2-CBHE-JP).[+]
Tipo: Artículo

References

Zahra, S. A., Gedajlovic, E., Neubaum, D. O., & Shulman, J. M. (2009). A typology of social entrepreneurs: Motives, search processes and ethical challenges. Journal of Business Venturing, 24(5), 519-532. doi:10.1016/j.jbusvent.2008.04.007

Ansoff, H. I. (1975). Managing Strategic Surprise by Response to Weak Signals. California Management Review, 18(2), 21-33. doi:10.2307/41164635

Report on Weak Signals Collection. TELMAP, European Commission Seventh Framework Project (IST-257822) https://cordis.europa.eu/docs/projects/cnect/2/257822/080/deliverables/001-D41Weaksignalscollectionfinal.doc [+]
Zahra, S. A., Gedajlovic, E., Neubaum, D. O., & Shulman, J. M. (2009). A typology of social entrepreneurs: Motives, search processes and ethical challenges. Journal of Business Venturing, 24(5), 519-532. doi:10.1016/j.jbusvent.2008.04.007

Ansoff, H. I. (1975). Managing Strategic Surprise by Response to Weak Signals. California Management Review, 18(2), 21-33. doi:10.2307/41164635

Report on Weak Signals Collection. TELMAP, European Commission Seventh Framework Project (IST-257822) https://cordis.europa.eu/docs/projects/cnect/2/257822/080/deliverables/001-D41Weaksignalscollectionfinal.doc

Dator, J. (2005). Universities without «quality» and quality without «universities». On the Horizon, 13(4), 199-215. doi:10.1108/10748120510627321

Hiltunen, E. (2008). The future sign and its three dimensions. Futures, 40(3), 247-260. doi:10.1016/j.futures.2007.08.021

Thorleuchter, D., Scheja, T., & Van den Poel, D. (2014). Semantic weak signal tracing. Expert Systems with Applications, 41(11), 5009-5016. doi:10.1016/j.eswa.2014.02.046

Julien, P.-A., Andriambeloson, E., & Ramangalahy, C. (2004). Networks, weak signals and technological innovations among SMEs in the land-based transportation equipment sector. Entrepreneurship & Regional Development, 16(4), 251-269. doi:10.1080/0898562042000263249

Xindong Wu, Xingquan Zhu, Gong-Qing Wu, & Wei Ding. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97-107. doi:10.1109/tkde.2013.109

Koivisto, R., Kulmala, I., & Gotcheva, N. (2016). Weak signals and damage scenarios — Systematics to identify weak signals and their sources related to mass transport attacks. Technological Forecasting and Social Change, 104, 180-190. doi:10.1016/j.techfore.2015.12.010

Davis, J., & Groves, C. (2019). City/future in the making: Masterplanning London’s Olympic legacy as anticipatory assemblage. Futures, 109, 13-23. doi:10.1016/j.futures.2019.04.002

Irvine, N., Nugent, C., Zhang, S., Wang, H., & NG, W. W. Y. (2019). Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments. Sensors, 20(1), 216. doi:10.3390/s20010216

Huang, M., & Liu, Z. (2019). Research on Mechanical Fault Prediction Method Based on Multifeature Fusion of Vibration Sensing Data. Sensors, 20(1), 6. doi:10.3390/s20010006

Awan, F. M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction. Sensors, 20(1), 322. doi:10.3390/s20010322

MohamadiBaghmolaei, R., Mozafari, N., & Hamzeh, A. (2017). Continuous states latency aware influence maximization in social networks. AI Communications, 30(2), 99-116. doi:10.3233/aic-170720

McGrath, J., & Fischetti, J. (2019). What if compulsory schooling was a 21st century invention? Weak signals from a systematic review of the literature. International Journal of Educational Research, 95, 212-226. doi:10.1016/j.ijer.2019.02.006

Chao, W., Jiang, X., Luo, Z., Hu, Y., & Ma, W. (2019). Interpretable Charge Prediction for Criminal Cases with Dynamic Rationale Attention. Journal of Artificial Intelligence Research, 66, 743-764. doi:10.1613/jair.1.11377

Van Veen, B. L., Roland Ortt, J., & Badke-Schaub, P. G. (2019). Compensating for perceptual filters in weak signal assessments. Futures, 108, 1-11. doi:10.1016/j.futures.2019.02.018

Thorleuchter, D., & Van den Poel, D. (2015). Idea mining for web-based weak signal detection. Futures, 66, 25-34. doi:10.1016/j.futures.2014.12.007

Rowe, E., Wright, G., & Derbyshire, J. (2017). Enhancing horizon scanning by utilizing pre-developed scenarios: Analysis of current practice and specification of a process improvement to aid the identification of important ‘weak signals’. Technological Forecasting and Social Change, 125, 224-235. doi:10.1016/j.techfore.2017.08.001

Yoon, J. (2012). Detecting weak signals for long-term business opportunities using text mining of Web news. Expert Systems with Applications, 39(16), 12543-12550. doi:10.1016/j.eswa.2012.04.059

Yoo, S., & Won, D. (2018). Simulation of Weak Signals of Nanotechnology Innovation in Complex System. Sustainability, 10(2), 486. doi:10.3390/su10020486

Suh, J. (2018). Generating Future-Oriented Energy Policies and Technologies from the Multidisciplinary Group Discussions by Text-Mining-Based Identification of Topics and Experts. Sustainability, 10(10), 3709. doi:10.3390/su10103709

Kwon, L.-N., Park, J.-H., Moon, Y.-H., Lee, B., Shin, Y., & Kim, Y.-K. (2018). Weak signal detecting of industry convergence using information of products and services of global listed companies - focusing on growth engine industry in South Korea -. Journal of Open Innovation: Technology, Market, and Complexity, 4(1). doi:10.1186/s40852-018-0083-6

Ben-Porat, O., Hirsch, S., Kuchi, L., Elad, G., Reichart, R., & Tennenholtz, M. (2020). Predicting Strategic Behavior from Free Text. Journal of Artificial Intelligence Research, 68. doi:10.1613/jair.1.11849

Fink, L., Yogev, N., & Even, A. (2017). Business intelligence and organizational learning: An empirical investigation of value creation processes. Information & Management, 54(1), 38-56. doi:10.1016/j.im.2016.03.009

Ilmola, L., & Kuusi, O. (2006). Filters of weak signals hinder foresight: Monitoring weak signals efficiently in corporate decision-making. Futures, 38(8), 908-924. doi:10.1016/j.futures.2005.12.019

Doulamis, N. D., Doulamis, A. D., Kokkinos, P., & Varvarigos, E. M. (2016). Event Detection in Twitter Microblogging. IEEE Transactions on Cybernetics, 46(12), 2810-2824. doi:10.1109/tcyb.2015.2489841

Atefeh, F., & Khreich, W. (2013). A Survey of Techniques for Event Detection in Twitter. Computational Intelligence, 31(1), 132-164. doi:10.1111/coin.12017

Mehmood, N. Q., Culmone, R., & Mostarda, L. (2017). Modeling temporal aspects of sensor data for MongoDB NoSQL database. Journal of Big Data, 4(1). doi:10.1186/s40537-017-0068-5

Bjeladinovic, S. (2018). A fresh approach for hybrid SQL/NoSQL database design based on data structuredness. Enterprise Information Systems, 12(8-9), 1202-1220. doi:10.1080/17517575.2018.1446102

Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a non-relation databases. Transportation Research Procedia, 40, 170-177. doi:10.1016/j.trpro.2019.07.027

Yangui, R., Nabli, A., & Gargouri, F. (2016). Automatic Transformation of Data Warehouse Schema to NoSQL Data Base: Comparative Study. Procedia Computer Science, 96, 255-264. doi:10.1016/j.procs.2016.08.138

Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40(3), 219-223. doi:10.1108/00330330610681295

Griol-Barres, I., Milla, S., & Millet, J. (2019). Implementación de un sistema de detección de señales débiles de futuro mediante técnicas de minería de textos. Revista española de Documentación Científica, 42(2), 234. doi:10.3989/redc.2019.2.1599

Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311-323. doi:10.1016/j.eswa.2016.03.043

Mendonça, S., Pina e Cunha, M., Kaivo-oja, J., & Ruff, F. (2004). Wild cards, weak signals and organisational improvisation. Futures, 36(2), 201-218. doi:10.1016/s0016-3287(03)00148-4

Ishikiriyama, C. S., Miro, D., & Gomes, C. F. S. (2015). Text Mining Business Intelligence: A small sample of what words can say. Procedia Computer Science, 55, 261-267. doi:10.1016/j.procs.2015.07.044

Yuen, J. (2018). Comparison of Impact Factor, Eigenfactor Metrics, and SCImago Journal Rank Indicator and h-index for Neurosurgical and Spinal Surgical Journals. World Neurosurgery, 119, e328-e337. doi:10.1016/j.wneu.2018.07.144

Thomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., … Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327-374. doi:10.1613/jair.1.11485

Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. doi:10.1016/j.ipm.2006.11.011

Gergelova, M. B., Labant, S., Kuzevic, S., Kuzevicova, Z., & Pavolova, H. (2020). Identification of Roof Surfaces from LiDAR Cloud Points by GIS Tools: A Case Study of Lučenec, Slovakia. Sustainability, 12(17), 6847. doi:10.3390/su12176847

Badmos, O., Rienow, A., Callo-Concha, D., Greve, K., & Jürgens, C. (2018). Urban Development in West Africa—Monitoring and Intensity Analysis of Slum Growth in Lagos: Linking Pattern and Process. Remote Sensing, 10(7), 1044. doi:10.3390/rs10071044

Thomson, E., Malhi, Y., Bartholomeus, H., Oliveras, I., Gvozdevaite, A., Peprah, T., … Doughty, C. (2018). Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery. Remote Sensing, 10(10), 1532. doi:10.3390/rs10101532

Samasse, K., Hanan, N., Tappan, G., & Diallo, Y. (2018). Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sensing, 10(11), 1785. doi:10.3390/rs10111785

Anchang, J. Y., Prihodko, L., Kaptué, A. T., Ross, C. W., Ji, W., Kumar, S. S., … Hanan, N. P. (2019). Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sensing, 11(5), 576. doi:10.3390/rs11050576

Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R. H., & McNally, A. (2019). Uncertainties in Evapotranspiration Estimates over West Africa. Remote Sensing, 11(8), 892. doi:10.3390/rs11080892

Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sensing, 11(24), 2928. doi:10.3390/rs11242928

Meftah, M., Damé, L., Keckhut, P., Bekki, S., Sarkissian, A., Hauchecorne, A., … Bui, A. (2019). UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sensing, 12(1), 92. doi:10.3390/rs12010092

Zhang, W., Yoshida, T., & Tang, X. (2008). Text classification based on multi-word with support vector machine. Knowledge-Based Systems, 21(8), 879-886. doi:10.1016/j.knosys.2008.03.044

Griol-Barres, I., Milla, S., & Millet, J. (2020). Improving strategic decision making by the detection of weak signals in heterogeneous documents by text mining techniques. AI Communications, 32(5-6), 347-360. doi:10.3233/aic-190625

Dzedzickis, A., Kaklauskas, A., & Bucinskas, V. (2020). Human Emotion Recognition: Review of Sensors and Methods. Sensors, 20(3), 592. doi:10.3390/s20030592

Haegeman, K., Marinelli, E., Scapolo, F., Ricci, A., & Sokolov, A. (2013). Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration? Technological Forecasting and Social Change, 80(3), 386-397. doi:10.1016/j.techfore.2012.10.002

Silva, V. O., Martins, C. A. P. S., & Ekel, P. Y. (2018). An Efficient Parallel Implementation of an Optimized Simplex Method in GPU-CUDA. IEEE Latin America Transactions, 16(2), 564-573. doi:10.1109/tla.2018.8327414

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem